pdelobelle
commited on
Commit
·
271b8bf
1
Parent(s):
2931540
Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
thumbnail:
|
4 |
tags:
|
5 |
- Dutch
|
6 |
- Flemish
|
7 |
- RoBERTa
|
8 |
- RobBERT
|
|
|
9 |
license: mit
|
10 |
datasets:
|
11 |
- oscar
|
@@ -14,7 +15,7 @@ datasets:
|
|
14 |
- europarl-mono
|
15 |
- conll2002
|
16 |
widget:
|
17 |
-
- text:
|
18 |
---
|
19 |
|
20 |
<p align="center">
|
@@ -53,7 +54,7 @@ RobBERT uses the [RoBERTa](https://arxiv.org/abs/1907.11692) architecture and pr
|
|
53 |
|
54 |
By default, RobBERT has the masked language model head used in training. This can be used as a zero-shot way to fill masks in sentences. It can be tested out for free on [RobBERT's Hosted infererence API of Huggingface](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=De+hoofdstad+van+Belgi%C3%AB+is+%3Cmask%3E.). You can also create a new prediction head for your own task by using any of HuggingFace's [RoBERTa-runners](https://huggingface.co/transformers/v2.7.0/examples.html#language-model-training), [their fine-tuning notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) by changing the model name to `pdelobelle/robbert-v2-dutch-base`, or use the original fairseq [RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta) training regimes.
|
55 |
|
56 |
-
Use the following code to download the base model and finetune it yourself, or use one of our finetuned models (documented on [our project site](https://
|
57 |
|
58 |
```python
|
59 |
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
|
|
1 |
---
|
2 |
+
language: nl
|
3 |
+
thumbnail: https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png
|
4 |
tags:
|
5 |
- Dutch
|
6 |
- Flemish
|
7 |
- RoBERTa
|
8 |
- RobBERT
|
9 |
+
- BERT
|
10 |
license: mit
|
11 |
datasets:
|
12 |
- oscar
|
|
|
15 |
- europarl-mono
|
16 |
- conll2002
|
17 |
widget:
|
18 |
+
- text: Hallo, ik ben RobBERT, een <mask> taalmodel van de KU Leuven.
|
19 |
---
|
20 |
|
21 |
<p align="center">
|
|
|
54 |
|
55 |
By default, RobBERT has the masked language model head used in training. This can be used as a zero-shot way to fill masks in sentences. It can be tested out for free on [RobBERT's Hosted infererence API of Huggingface](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=De+hoofdstad+van+Belgi%C3%AB+is+%3Cmask%3E.). You can also create a new prediction head for your own task by using any of HuggingFace's [RoBERTa-runners](https://huggingface.co/transformers/v2.7.0/examples.html#language-model-training), [their fine-tuning notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) by changing the model name to `pdelobelle/robbert-v2-dutch-base`, or use the original fairseq [RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta) training regimes.
|
56 |
|
57 |
+
Use the following code to download the base model and finetune it yourself, or use one of our finetuned models (documented on [our project site](https://pieter.ai/robbert/)).
|
58 |
|
59 |
```python
|
60 |
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|