File size: 1,949 Bytes
05fe5d5 20a3e0c 05fe5d5 20a3e0c 05fe5d5 20a3e0c 05fe5d5 20a3e0c 05fe5d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
base_model: microsoft/deberta-v3-xsmall
model-index:
- name: deberta-v3-xsmall-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- type: accuracy
value: 0.932
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-xsmall-emotion
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1877
- Accuracy: 0.932
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3683 | 1.0 | 500 | 0.8479 | 0.6975 |
| 0.547 | 2.0 | 1000 | 0.2881 | 0.905 |
| 0.2378 | 3.0 | 1500 | 0.2116 | 0.925 |
| 0.1704 | 4.0 | 2000 | 0.1877 | 0.932 |
| 0.1392 | 5.0 | 2500 | 0.1718 | 0.9295 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|