--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - accuracy base_model: microsoft/deberta-v3-xsmall model-index: - name: deberta-v3-xsmall-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.932 name: Accuracy --- # deberta-v3-xsmall-emotion This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1877 - Accuracy: 0.932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3683 | 1.0 | 500 | 0.8479 | 0.6975 | | 0.547 | 2.0 | 1000 | 0.2881 | 0.905 | | 0.2378 | 3.0 | 1500 | 0.2116 | 0.925 | | 0.1704 | 4.0 | 2000 | 0.1877 | 0.932 | | 0.1392 | 5.0 | 2500 | 0.1718 | 0.9295 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3