--- language: en tags: - pytorch - question-answering datasets: - squad2 metrics: - exact - f1 widget: - text: "What discipline did Winkelmann create?" context: "Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. The prophet and founding hero of modern archaeology, Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art." --- # bert-base-finetuned-squad2 ## Model description This model is based on **[bert-base-uncased](https://huggingface.co/bert-base-uncased)** and was finetuned on **[SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/)**. The corresponding papers you can found [here (model)](https://arxiv.org/abs/1810.04805) and [here (data)](https://arxiv.org/abs/1806.03822). ## How to use ```python from transformers.pipelines import pipeline model_name = "phiyodr/bert-base-finetuned-squad2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'What discipline did Winkelmann create?', 'context': 'Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. "The prophet and founding hero of modern archaeology", Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art. ' } nlp(inputs) ``` ## Training procedure ``` { "base_model": "bert-base-uncased", "do_lower_case": True, "learning_rate": 3e-5, "num_train_epochs": 4, "max_seq_length": 384, "doc_stride": 128, "max_query_length": 64, "batch_size": 96 } ``` ## Eval results - Data: [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json) - Script: [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) (original script from [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/README.md)) ``` { "exact": 70.3950138970774, "f1": 73.90527661873521, "total": 11873, "HasAns_exact": 71.4574898785425, "HasAns_f1": 78.48808186475087, "HasAns_total": 5928, "NoAns_exact": 69.33557611438184, "NoAns_f1": 69.33557611438184, "NoAns_total": 5945 } ```