pritamdeka commited on
Commit
1f2c124
·
verified ·
1 Parent(s): b024c63

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: l3cube-pune/assamese-bert
3
+ datasets:
4
+ - sentence-transformers/all-nli
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - pearson_cosine
10
+ - spearman_cosine
11
+ - pearson_manhattan
12
+ - spearman_manhattan
13
+ - pearson_euclidean
14
+ - spearman_euclidean
15
+ - pearson_dot
16
+ - spearman_dot
17
+ - pearson_max
18
+ - spearman_max
19
+ pipeline_tag: sentence-similarity
20
+ tags:
21
+ - sentence-transformers
22
+ - sentence-similarity
23
+ - feature-extraction
24
+ - generated_from_trainer
25
+ - dataset_size:557850
26
+ - loss:MultipleNegativesRankingLoss
27
+ widget:
28
+ - source_sentence: A man is jumping unto his filthy bed.
29
+ sentences:
30
+ - A young male is looking at a newspaper while 2 females walks past him.
31
+ - The bed is dirty.
32
+ - The man is on the moon.
33
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
34
+ beach area.
35
+ sentences:
36
+ - A man is ouside near the beach.
37
+ - Three policemen patrol the streets on bikes
38
+ - A man is sitting on his couch.
39
+ - source_sentence: The man is wearing a blue shirt.
40
+ sentences:
41
+ - Near the trashcan the man stood and smoked
42
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
43
+ with water in the background.
44
+ - A man in a black shirt is playing a guitar.
45
+ - source_sentence: The girls are outdoors.
46
+ sentences:
47
+ - Two girls riding on an amusement part ride.
48
+ - a guy laughs while doing laundry
49
+ - Three girls are standing together in a room, one is listening, one is writing
50
+ on a wall and the third is talking to them.
51
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
52
+ sits on the sidewalk smiling.
53
+ sentences:
54
+ - A worker is looking out of a manhole.
55
+ - A man is giving a presentation.
56
+ - The workers are both inside the manhole.
57
+ model-index:
58
+ - name: SentenceTransformer based on l3cube-pune/assamese-bert
59
+ results:
60
+ - task:
61
+ type: semantic-similarity
62
+ name: Semantic Similarity
63
+ dataset:
64
+ name: sts dev
65
+ type: sts-dev
66
+ metrics:
67
+ - type: pearson_cosine
68
+ value: 0.8448431188558219
69
+ name: Pearson Cosine
70
+ - type: spearman_cosine
71
+ value: 0.848270397607023
72
+ name: Spearman Cosine
73
+ - type: pearson_manhattan
74
+ value: 0.8429962459024234
75
+ name: Pearson Manhattan
76
+ - type: spearman_manhattan
77
+ value: 0.8461225961159852
78
+ name: Spearman Manhattan
79
+ - type: pearson_euclidean
80
+ value: 0.8450811877325317
81
+ name: Pearson Euclidean
82
+ - type: spearman_euclidean
83
+ value: 0.8481702238714027
84
+ name: Spearman Euclidean
85
+ - type: pearson_dot
86
+ value: 0.7600437454974306
87
+ name: Pearson Dot
88
+ - type: spearman_dot
89
+ value: 0.7604490741243843
90
+ name: Spearman Dot
91
+ - type: pearson_max
92
+ value: 0.8450811877325317
93
+ name: Pearson Max
94
+ - type: spearman_max
95
+ value: 0.848270397607023
96
+ name: Spearman Max
97
+ - task:
98
+ type: semantic-similarity
99
+ name: Semantic Similarity
100
+ dataset:
101
+ name: sts test
102
+ type: sts-test
103
+ metrics:
104
+ - type: pearson_cosine
105
+ value: 0.8160018744466311
106
+ name: Pearson Cosine
107
+ - type: spearman_cosine
108
+ value: 0.8230016183156494
109
+ name: Spearman Cosine
110
+ - type: pearson_manhattan
111
+ value: 0.8104201802445242
112
+ name: Pearson Manhattan
113
+ - type: spearman_manhattan
114
+ value: 0.8104000391884387
115
+ name: Spearman Manhattan
116
+ - type: pearson_euclidean
117
+ value: 0.8108715587588242
118
+ name: Pearson Euclidean
119
+ - type: spearman_euclidean
120
+ value: 0.8112881633291651
121
+ name: Spearman Euclidean
122
+ - type: pearson_dot
123
+ value: 0.7088828153549986
124
+ name: Pearson Dot
125
+ - type: spearman_dot
126
+ value: 0.6991542788989243
127
+ name: Spearman Dot
128
+ - type: pearson_max
129
+ value: 0.8160018744466311
130
+ name: Pearson Max
131
+ - type: spearman_max
132
+ value: 0.8230016183156494
133
+ name: Spearman Max
134
+ ---
135
+
136
+ # SentenceTransformer based on l3cube-pune/assamese-bert
137
+
138
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [l3cube-pune/assamese-bert](https://huggingface.co/l3cube-pune/assamese-bert) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
139
+
140
+ ## Model Details
141
+
142
+ ### Model Description
143
+ - **Model Type:** Sentence Transformer
144
+ - **Base model:** [l3cube-pune/assamese-bert](https://huggingface.co/l3cube-pune/assamese-bert) <!-- at revision ebe759281276a70717fd8d63102a9820b9360812 -->
145
+ - **Maximum Sequence Length:** 512 tokens
146
+ - **Output Dimensionality:** 768 tokens
147
+ - **Similarity Function:** Cosine Similarity
148
+ - **Training Dataset:**
149
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
150
+ - **Language:** en
151
+ <!-- - **License:** Unknown -->
152
+
153
+ ### Model Sources
154
+
155
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
156
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
157
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
158
+
159
+ ### Full Model Architecture
160
+
161
+ ```
162
+ SentenceTransformer(
163
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
164
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
165
+ )
166
+ ```
167
+
168
+ ## Usage
169
+
170
+ ### Direct Usage (Sentence Transformers)
171
+
172
+ First install the Sentence Transformers library:
173
+
174
+ ```bash
175
+ pip install -U sentence-transformers
176
+ ```
177
+
178
+ Then you can load this model and run inference.
179
+ ```python
180
+ from sentence_transformers import SentenceTransformer
181
+
182
+ # Download from the 🤗 Hub
183
+ model = SentenceTransformer("pritamdeka/assamese-bert-nli-v2")
184
+ # Run inference
185
+ sentences = [
186
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
187
+ 'A worker is looking out of a manhole.',
188
+ 'The workers are both inside the manhole.',
189
+ ]
190
+ embeddings = model.encode(sentences)
191
+ print(embeddings.shape)
192
+ # [3, 768]
193
+
194
+ # Get the similarity scores for the embeddings
195
+ similarities = model.similarity(embeddings, embeddings)
196
+ print(similarities.shape)
197
+ # [3, 3]
198
+ ```
199
+
200
+ <!--
201
+ ### Direct Usage (Transformers)
202
+
203
+ <details><summary>Click to see the direct usage in Transformers</summary>
204
+
205
+ </details>
206
+ -->
207
+
208
+ <!--
209
+ ### Downstream Usage (Sentence Transformers)
210
+
211
+ You can finetune this model on your own dataset.
212
+
213
+ <details><summary>Click to expand</summary>
214
+
215
+ </details>
216
+ -->
217
+
218
+ <!--
219
+ ### Out-of-Scope Use
220
+
221
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
222
+ -->
223
+
224
+ ## Evaluation
225
+
226
+ ### Metrics
227
+
228
+ #### Semantic Similarity
229
+ * Dataset: `sts-dev`
230
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
231
+
232
+ | Metric | Value |
233
+ |:--------------------|:-----------|
234
+ | pearson_cosine | 0.8448 |
235
+ | **spearman_cosine** | **0.8483** |
236
+ | pearson_manhattan | 0.843 |
237
+ | spearman_manhattan | 0.8461 |
238
+ | pearson_euclidean | 0.8451 |
239
+ | spearman_euclidean | 0.8482 |
240
+ | pearson_dot | 0.76 |
241
+ | spearman_dot | 0.7604 |
242
+ | pearson_max | 0.8451 |
243
+ | spearman_max | 0.8483 |
244
+
245
+ #### Semantic Similarity
246
+ * Dataset: `sts-test`
247
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
248
+
249
+ | Metric | Value |
250
+ |:--------------------|:----------|
251
+ | pearson_cosine | 0.816 |
252
+ | **spearman_cosine** | **0.823** |
253
+ | pearson_manhattan | 0.8104 |
254
+ | spearman_manhattan | 0.8104 |
255
+ | pearson_euclidean | 0.8109 |
256
+ | spearman_euclidean | 0.8113 |
257
+ | pearson_dot | 0.7089 |
258
+ | spearman_dot | 0.6992 |
259
+ | pearson_max | 0.816 |
260
+ | spearman_max | 0.823 |
261
+
262
+ <!--
263
+ ## Bias, Risks and Limitations
264
+
265
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
266
+ -->
267
+
268
+ <!--
269
+ ### Recommendations
270
+
271
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
272
+ -->
273
+
274
+ ## Training Details
275
+
276
+ ### Training Dataset
277
+
278
+ #### sentence-transformers/all-nli
279
+
280
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
281
+ * Size: 557,850 training samples
282
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
283
+ * Approximate statistics based on the first 1000 samples:
284
+ | | anchor | positive | negative |
285
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
286
+ | type | string | string | string |
287
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.55 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.08 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.7 tokens</li><li>max: 53 tokens</li></ul> |
288
+ * Samples:
289
+ | anchor | positive | negative |
290
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
291
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
292
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
293
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
294
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
295
+ ```json
296
+ {
297
+ "scale": 20.0,
298
+ "similarity_fct": "cos_sim"
299
+ }
300
+ ```
301
+
302
+ ### Evaluation Dataset
303
+
304
+ #### sentence-transformers/all-nli
305
+
306
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
307
+ * Size: 6,584 evaluation samples
308
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
309
+ * Approximate statistics based on the first 1000 samples:
310
+ | | anchor | positive | negative |
311
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
312
+ | type | string | string | string |
313
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.59 tokens</li><li>max: 29 tokens</li></ul> |
314
+ * Samples:
315
+ | anchor | positive | negative |
316
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
317
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
318
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
319
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
320
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
321
+ ```json
322
+ {
323
+ "scale": 20.0,
324
+ "similarity_fct": "cos_sim"
325
+ }
326
+ ```
327
+
328
+ ### Training Hyperparameters
329
+ #### Non-Default Hyperparameters
330
+
331
+ - `eval_strategy`: steps
332
+ - `per_device_train_batch_size`: 64
333
+ - `per_device_eval_batch_size`: 64
334
+ - `num_train_epochs`: 1
335
+ - `warmup_ratio`: 0.1
336
+ - `fp16`: True
337
+ - `batch_sampler`: no_duplicates
338
+
339
+ #### All Hyperparameters
340
+ <details><summary>Click to expand</summary>
341
+
342
+ - `overwrite_output_dir`: False
343
+ - `do_predict`: False
344
+ - `eval_strategy`: steps
345
+ - `prediction_loss_only`: True
346
+ - `per_device_train_batch_size`: 64
347
+ - `per_device_eval_batch_size`: 64
348
+ - `per_gpu_train_batch_size`: None
349
+ - `per_gpu_eval_batch_size`: None
350
+ - `gradient_accumulation_steps`: 1
351
+ - `eval_accumulation_steps`: None
352
+ - `learning_rate`: 5e-05
353
+ - `weight_decay`: 0.0
354
+ - `adam_beta1`: 0.9
355
+ - `adam_beta2`: 0.999
356
+ - `adam_epsilon`: 1e-08
357
+ - `max_grad_norm`: 1.0
358
+ - `num_train_epochs`: 1
359
+ - `max_steps`: -1
360
+ - `lr_scheduler_type`: linear
361
+ - `lr_scheduler_kwargs`: {}
362
+ - `warmup_ratio`: 0.1
363
+ - `warmup_steps`: 0
364
+ - `log_level`: passive
365
+ - `log_level_replica`: warning
366
+ - `log_on_each_node`: True
367
+ - `logging_nan_inf_filter`: True
368
+ - `save_safetensors`: True
369
+ - `save_on_each_node`: False
370
+ - `save_only_model`: False
371
+ - `restore_callback_states_from_checkpoint`: False
372
+ - `no_cuda`: False
373
+ - `use_cpu`: False
374
+ - `use_mps_device`: False
375
+ - `seed`: 42
376
+ - `data_seed`: None
377
+ - `jit_mode_eval`: False
378
+ - `use_ipex`: False
379
+ - `bf16`: False
380
+ - `fp16`: True
381
+ - `fp16_opt_level`: O1
382
+ - `half_precision_backend`: auto
383
+ - `bf16_full_eval`: False
384
+ - `fp16_full_eval`: False
385
+ - `tf32`: None
386
+ - `local_rank`: 0
387
+ - `ddp_backend`: None
388
+ - `tpu_num_cores`: None
389
+ - `tpu_metrics_debug`: False
390
+ - `debug`: []
391
+ - `dataloader_drop_last`: False
392
+ - `dataloader_num_workers`: 0
393
+ - `dataloader_prefetch_factor`: None
394
+ - `past_index`: -1
395
+ - `disable_tqdm`: False
396
+ - `remove_unused_columns`: True
397
+ - `label_names`: None
398
+ - `load_best_model_at_end`: False
399
+ - `ignore_data_skip`: False
400
+ - `fsdp`: []
401
+ - `fsdp_min_num_params`: 0
402
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
403
+ - `fsdp_transformer_layer_cls_to_wrap`: None
404
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
405
+ - `deepspeed`: None
406
+ - `label_smoothing_factor`: 0.0
407
+ - `optim`: adamw_torch
408
+ - `optim_args`: None
409
+ - `adafactor`: False
410
+ - `group_by_length`: False
411
+ - `length_column_name`: length
412
+ - `ddp_find_unused_parameters`: None
413
+ - `ddp_bucket_cap_mb`: None
414
+ - `ddp_broadcast_buffers`: False
415
+ - `dataloader_pin_memory`: True
416
+ - `dataloader_persistent_workers`: False
417
+ - `skip_memory_metrics`: True
418
+ - `use_legacy_prediction_loop`: False
419
+ - `push_to_hub`: False
420
+ - `resume_from_checkpoint`: None
421
+ - `hub_model_id`: None
422
+ - `hub_strategy`: every_save
423
+ - `hub_private_repo`: False
424
+ - `hub_always_push`: False
425
+ - `gradient_checkpointing`: False
426
+ - `gradient_checkpointing_kwargs`: None
427
+ - `include_inputs_for_metrics`: False
428
+ - `eval_do_concat_batches`: True
429
+ - `fp16_backend`: auto
430
+ - `push_to_hub_model_id`: None
431
+ - `push_to_hub_organization`: None
432
+ - `mp_parameters`:
433
+ - `auto_find_batch_size`: False
434
+ - `full_determinism`: False
435
+ - `torchdynamo`: None
436
+ - `ray_scope`: last
437
+ - `ddp_timeout`: 1800
438
+ - `torch_compile`: False
439
+ - `torch_compile_backend`: None
440
+ - `torch_compile_mode`: None
441
+ - `dispatch_batches`: None
442
+ - `split_batches`: None
443
+ - `include_tokens_per_second`: False
444
+ - `include_num_input_tokens_seen`: False
445
+ - `neftune_noise_alpha`: None
446
+ - `optim_target_modules`: None
447
+ - `batch_eval_metrics`: False
448
+ - `eval_on_start`: False
449
+ - `batch_sampler`: no_duplicates
450
+ - `multi_dataset_batch_sampler`: proportional
451
+
452
+ </details>
453
+
454
+ ### Training Logs
455
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
456
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
457
+ | 0 | 0 | - | - | 0.6401 | - |
458
+ | 0.0574 | 500 | 2.5567 | 1.2774 | 0.7654 | - |
459
+ | 0.1147 | 1000 | 1.3874 | 1.0303 | 0.7997 | - |
460
+ | 0.1721 | 1500 | 1.1493 | 0.9597 | 0.7867 | - |
461
+ | 0.2294 | 2000 | 0.9885 | 0.7656 | 0.7895 | - |
462
+ | 0.2868 | 2500 | 0.9588 | 0.8041 | 0.7797 | - |
463
+ | 0.3442 | 3000 | 0.922 | 0.7280 | 0.7785 | - |
464
+ | 0.4015 | 3500 | 0.8693 | 0.6803 | 0.7925 | - |
465
+ | 0.4589 | 4000 | 0.8436 | 0.6892 | 0.7866 | - |
466
+ | 0.5162 | 4500 | 0.8033 | 0.7127 | 0.7818 | - |
467
+ | 0.5736 | 5000 | 0.8061 | 0.6854 | 0.7746 | - |
468
+ | 0.6310 | 5500 | 0.8069 | 0.6496 | 0.7856 | - |
469
+ | 0.6883 | 6000 | 0.8133 | 0.6490 | 0.7787 | - |
470
+ | 0.7457 | 6500 | 0.7857 | 0.5926 | 0.8010 | - |
471
+ | 0.8030 | 7000 | 0.4404 | 0.4472 | 0.8457 | - |
472
+ | 0.8604 | 7500 | 0.3422 | 0.4441 | 0.8473 | - |
473
+ | 0.9177 | 8000 | 0.308 | 0.4315 | 0.8494 | - |
474
+ | 0.9751 | 8500 | 0.299 | 0.4305 | 0.8483 | - |
475
+ | 1.0 | 8717 | - | - | - | 0.8230 |
476
+
477
+
478
+ ### Framework Versions
479
+ - Python: 3.10.12
480
+ - Sentence Transformers: 3.0.1
481
+ - Transformers: 4.42.4
482
+ - PyTorch: 2.3.1+cu121
483
+ - Accelerate: 0.32.1
484
+ - Datasets: 2.20.0
485
+ - Tokenizers: 0.19.1
486
+
487
+ ## Citation
488
+
489
+ ### BibTeX
490
+
491
+ #### Sentence Transformers
492
+ ```bibtex
493
+ @inproceedings{reimers-2019-sentence-bert,
494
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
495
+ author = "Reimers, Nils and Gurevych, Iryna",
496
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
497
+ month = "11",
498
+ year = "2019",
499
+ publisher = "Association for Computational Linguistics",
500
+ url = "https://arxiv.org/abs/1908.10084",
501
+ }
502
+ ```
503
+
504
+ #### MultipleNegativesRankingLoss
505
+ ```bibtex
506
+ @misc{henderson2017efficient,
507
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
508
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
509
+ year={2017},
510
+ eprint={1705.00652},
511
+ archivePrefix={arXiv},
512
+ primaryClass={cs.CL}
513
+ }
514
+ ```
515
+
516
+ <!--
517
+ ## Glossary
518
+
519
+ *Clearly define terms in order to be accessible across audiences.*
520
+ -->
521
+
522
+ <!--
523
+ ## Model Card Authors
524
+
525
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
526
+ -->
527
+
528
+ <!--
529
+ ## Model Card Contact
530
+
531
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
532
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "l3cube-pune/assamese-bert",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "embedding_size": 768,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 197285
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb4456e397f3c20fdeabcfb816edc76f943efbcabce5b15fa51bee2405fed43
3
+ size 950247272
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "103": {
20
+ "content": "[MASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[CLS]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "105": {
36
+ "content": "[SEP]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "lowercase": false,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": false,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff