---
base_model: l3cube-pune/assamese-bert
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A man is jumping unto his filthy bed.
sentences:
- A young male is looking at a newspaper while 2 females walks past him.
- The bed is dirty.
- The man is on the moon.
- source_sentence: A carefully balanced male stands on one foot near a clean ocean
beach area.
sentences:
- A man is ouside near the beach.
- Three policemen patrol the streets on bikes
- A man is sitting on his couch.
- source_sentence: The man is wearing a blue shirt.
sentences:
- Near the trashcan the man stood and smoked
- A man in a blue shirt leans on a wall beside a road with a blue van and red car
with water in the background.
- A man in a black shirt is playing a guitar.
- source_sentence: The girls are outdoors.
sentences:
- Two girls riding on an amusement part ride.
- a guy laughs while doing laundry
- Three girls are standing together in a room, one is listening, one is writing
on a wall and the third is talking to them.
- source_sentence: A construction worker peeking out of a manhole while his coworker
sits on the sidewalk smiling.
sentences:
- A worker is looking out of a manhole.
- A man is giving a presentation.
- The workers are both inside the manhole.
model-index:
- name: SentenceTransformer based on l3cube-pune/assamese-bert
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8448431188558219
name: Pearson Cosine
- type: spearman_cosine
value: 0.848270397607023
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8429962459024234
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8461225961159852
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8450811877325317
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8481702238714027
name: Spearman Euclidean
- type: pearson_dot
value: 0.7600437454974306
name: Pearson Dot
- type: spearman_dot
value: 0.7604490741243843
name: Spearman Dot
- type: pearson_max
value: 0.8450811877325317
name: Pearson Max
- type: spearman_max
value: 0.848270397607023
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8160018744466311
name: Pearson Cosine
- type: spearman_cosine
value: 0.8230016183156494
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8104201802445242
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8104000391884387
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8108715587588242
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8112881633291651
name: Spearman Euclidean
- type: pearson_dot
value: 0.7088828153549986
name: Pearson Dot
- type: spearman_dot
value: 0.6991542788989243
name: Spearman Dot
- type: pearson_max
value: 0.8160018744466311
name: Pearson Max
- type: spearman_max
value: 0.8230016183156494
name: Spearman Max
---
# SentenceTransformer based on l3cube-pune/assamese-bert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [l3cube-pune/assamese-bert](https://huggingface.co/l3cube-pune/assamese-bert) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [l3cube-pune/assamese-bert](https://huggingface.co/l3cube-pune/assamese-bert)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pritamdeka/assamese-bert-nli-v2")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8448 |
| **spearman_cosine** | **0.8483** |
| pearson_manhattan | 0.843 |
| spearman_manhattan | 0.8461 |
| pearson_euclidean | 0.8451 |
| spearman_euclidean | 0.8482 |
| pearson_dot | 0.76 |
| spearman_dot | 0.7604 |
| pearson_max | 0.8451 |
| spearman_max | 0.8483 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.816 |
| **spearman_cosine** | **0.823** |
| pearson_manhattan | 0.8104 |
| spearman_manhattan | 0.8104 |
| pearson_euclidean | 0.8109 |
| spearman_euclidean | 0.8113 |
| pearson_dot | 0.7089 |
| spearman_dot | 0.6992 |
| pearson_max | 0.816 |
| spearman_max | 0.823 |
## Training Details
### Training Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| A person is at a diner, ordering an omelette.
|
| Children smiling and waving at camera
| There are children present
| The kids are frowning
|
| A boy is jumping on skateboard in the middle of a red bridge.
| The boy does a skateboarding trick.
| The boy skates down the sidewalk.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Two women are embracing while holding to go packages.
| Two woman are holding packages.
| The men are fighting outside a deli.
|
| Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
| Two kids in numbered jerseys wash their hands.
| Two kids in jackets walk to school.
|
| A man selling donuts to a customer during a world exhibition event held in the city of Angeles
| A man selling donuts to a customer.
| A woman drinks her coffee in a small cafe.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters