--- license: apache-2.0 base_model: facebook/dinov2-large tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: aesthetics_v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5580614847630554 --- # aesthetics_v2 This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6501 - Accuracy: 0.5581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1465 | 0.17 | 20 | 1.6860 | 0.5313 | | 1.2703 | 0.34 | 40 | 1.8412 | 0.5014 | | 1.3152 | 0.52 | 60 | 1.8200 | 0.5042 | | 1.2313 | 0.69 | 80 | 1.7971 | 0.5112 | | 1.3476 | 0.86 | 100 | 1.7649 | 0.5100 | | 1.2597 | 1.03 | 120 | 1.7454 | 0.5175 | | 1.0094 | 1.2 | 140 | 1.7356 | 0.5257 | | 0.9743 | 1.37 | 160 | 1.7074 | 0.5352 | | 1.0209 | 1.55 | 180 | 1.7331 | 0.5322 | | 1.0692 | 1.72 | 200 | 1.7370 | 0.5331 | | 1.0556 | 1.89 | 220 | 1.6788 | 0.5487 | | 0.8634 | 2.06 | 240 | 1.6644 | 0.5536 | | 0.79 | 2.23 | 260 | 1.6848 | 0.5531 | | 0.7916 | 2.4 | 280 | 1.6761 | 0.5528 | | 0.7454 | 2.58 | 300 | 1.6520 | 0.5534 | | 0.7497 | 2.75 | 320 | 1.6337 | 0.5554 | | 0.7537 | 2.92 | 340 | 1.6501 | 0.5581 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0 - Datasets 2.17.1 - Tokenizers 0.15.2