sanchit-gandhi HF staff commited on
Commit
e5e7d52
·
1 Parent(s): 2d42acb

Saving weights and logs of epoch 1

Browse files
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ distil_whisper/__pycache__/__init__.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
37
+ distil_whisper/__pycache__/layers.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
38
+ distil_whisper/__pycache__/modeling_flax_whisper.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
39
+ distil_whisper/__pycache__/partitioner.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
40
+ distil_whisper/__pycache__/pipeline.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
41
+ distil_whisper/__pycache__/train_state.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50364,
3
+ "<|0.02|>": 50365,
4
+ "<|0.04|>": 50366,
5
+ "<|0.06|>": 50367,
6
+ "<|0.08|>": 50368,
7
+ "<|0.10|>": 50369,
8
+ "<|0.12|>": 50370,
9
+ "<|0.14|>": 50371,
10
+ "<|0.16|>": 50372,
11
+ "<|0.18|>": 50373,
12
+ "<|0.20|>": 50374,
13
+ "<|0.22|>": 50375,
14
+ "<|0.24|>": 50376,
15
+ "<|0.26|>": 50377,
16
+ "<|0.28|>": 50378,
17
+ "<|0.30|>": 50379,
18
+ "<|0.32|>": 50380,
19
+ "<|0.34|>": 50381,
20
+ "<|0.36|>": 50382,
21
+ "<|0.38|>": 50383,
22
+ "<|0.40|>": 50384,
23
+ "<|0.42|>": 50385,
24
+ "<|0.44|>": 50386,
25
+ "<|0.46|>": 50387,
26
+ "<|0.48|>": 50388,
27
+ "<|0.50|>": 50389,
28
+ "<|0.52|>": 50390,
29
+ "<|0.54|>": 50391,
30
+ "<|0.56|>": 50392,
31
+ "<|0.58|>": 50393,
32
+ "<|0.60|>": 50394,
33
+ "<|0.62|>": 50395,
34
+ "<|0.64|>": 50396,
35
+ "<|0.66|>": 50397,
36
+ "<|0.68|>": 50398,
37
+ "<|0.70|>": 50399,
38
+ "<|0.72|>": 50400,
39
+ "<|0.74|>": 50401,
40
+ "<|0.76|>": 50402,
41
+ "<|0.78|>": 50403,
42
+ "<|0.80|>": 50404,
43
+ "<|0.82|>": 50405,
44
+ "<|0.84|>": 50406,
45
+ "<|0.86|>": 50407,
46
+ "<|0.88|>": 50408,
47
+ "<|0.90|>": 50409,
48
+ "<|0.92|>": 50410,
49
+ "<|0.94|>": 50411,
50
+ "<|0.96|>": 50412,
51
+ "<|0.98|>": 50413,
52
+ "<|1.00|>": 50414,
53
+ "<|1.02|>": 50415,
54
+ "<|1.04|>": 50416,
55
+ "<|1.06|>": 50417,
56
+ "<|1.08|>": 50418,
57
+ "<|1.10|>": 50419,
58
+ "<|1.12|>": 50420,
59
+ "<|1.14|>": 50421,
60
+ "<|1.16|>": 50422,
61
+ "<|1.18|>": 50423,
62
+ "<|1.20|>": 50424,
63
+ "<|1.22|>": 50425,
64
+ "<|1.24|>": 50426,
65
+ "<|1.26|>": 50427,
66
+ "<|1.28|>": 50428,
67
+ "<|1.30|>": 50429,
68
+ "<|1.32|>": 50430,
69
+ "<|1.34|>": 50431,
70
+ "<|1.36|>": 50432,
71
+ "<|1.38|>": 50433,
72
+ "<|1.40|>": 50434,
73
+ "<|1.42|>": 50435,
74
+ "<|1.44|>": 50436,
75
+ "<|1.46|>": 50437,
76
+ "<|1.48|>": 50438,
77
+ "<|1.50|>": 50439,
78
+ "<|1.52|>": 50440,
79
+ "<|1.54|>": 50441,
80
+ "<|1.56|>": 50442,
81
+ "<|1.58|>": 50443,
82
+ "<|1.60|>": 50444,
83
+ "<|1.62|>": 50445,
84
+ "<|1.64|>": 50446,
85
+ "<|1.66|>": 50447,
86
+ "<|1.68|>": 50448,
87
+ "<|1.70|>": 50449,
88
+ "<|1.72|>": 50450,
89
+ "<|1.74|>": 50451,
90
+ "<|1.76|>": 50452,
91
+ "<|1.78|>": 50453,
92
+ "<|1.80|>": 50454,
93
+ "<|1.82|>": 50455,
94
+ "<|1.84|>": 50456,
95
+ "<|1.86|>": 50457,
96
+ "<|1.88|>": 50458,
97
+ "<|1.90|>": 50459,
98
+ "<|1.92|>": 50460,
99
+ "<|1.94|>": 50461,
100
+ "<|1.96|>": 50462,
101
+ "<|1.98|>": 50463,
102
+ "<|10.00|>": 50864,
103
+ "<|10.02|>": 50865,
104
+ "<|10.04|>": 50866,
105
+ "<|10.06|>": 50867,
106
+ "<|10.08|>": 50868,
107
+ "<|10.10|>": 50869,
108
+ "<|10.12|>": 50870,
109
+ "<|10.14|>": 50871,
110
+ "<|10.16|>": 50872,
111
+ "<|10.18|>": 50873,
112
+ "<|10.20|>": 50874,
113
+ "<|10.22|>": 50875,
114
+ "<|10.24|>": 50876,
115
+ "<|10.26|>": 50877,
116
+ "<|10.28|>": 50878,
117
+ "<|10.30|>": 50879,
118
+ "<|10.32|>": 50880,
119
+ "<|10.34|>": 50881,
120
+ "<|10.36|>": 50882,
121
+ "<|10.38|>": 50883,
122
+ "<|10.40|>": 50884,
123
+ "<|10.42|>": 50885,
124
+ "<|10.44|>": 50886,
125
+ "<|10.46|>": 50887,
126
+ "<|10.48|>": 50888,
127
+ "<|10.50|>": 50889,
128
+ "<|10.52|>": 50890,
129
+ "<|10.54|>": 50891,
130
+ "<|10.56|>": 50892,
131
+ "<|10.58|>": 50893,
132
+ "<|10.60|>": 50894,
133
+ "<|10.62|>": 50895,
134
+ "<|10.64|>": 50896,
135
+ "<|10.66|>": 50897,
136
+ "<|10.68|>": 50898,
137
+ "<|10.70|>": 50899,
138
+ "<|10.72|>": 50900,
139
+ "<|10.74|>": 50901,
140
+ "<|10.76|>": 50902,
141
+ "<|10.78|>": 50903,
142
+ "<|10.80|>": 50904,
143
+ "<|10.82|>": 50905,
144
+ "<|10.84|>": 50906,
145
+ "<|10.86|>": 50907,
146
+ "<|10.88|>": 50908,
147
+ "<|10.90|>": 50909,
148
+ "<|10.92|>": 50910,
149
+ "<|10.94|>": 50911,
150
+ "<|10.96|>": 50912,
151
+ "<|10.98|>": 50913,
152
+ "<|11.00|>": 50914,
153
+ "<|11.02|>": 50915,
154
+ "<|11.04|>": 50916,
155
+ "<|11.06|>": 50917,
156
+ "<|11.08|>": 50918,
157
+ "<|11.10|>": 50919,
158
+ "<|11.12|>": 50920,
159
+ "<|11.14|>": 50921,
160
+ "<|11.16|>": 50922,
161
+ "<|11.18|>": 50923,
162
+ "<|11.20|>": 50924,
163
+ "<|11.22|>": 50925,
164
+ "<|11.24|>": 50926,
165
+ "<|11.26|>": 50927,
166
+ "<|11.28|>": 50928,
167
+ "<|11.30|>": 50929,
168
+ "<|11.32|>": 50930,
169
+ "<|11.34|>": 50931,
170
+ "<|11.36|>": 50932,
171
+ "<|11.38|>": 50933,
172
+ "<|11.40|>": 50934,
173
+ "<|11.42|>": 50935,
174
+ "<|11.44|>": 50936,
175
+ "<|11.46|>": 50937,
176
+ "<|11.48|>": 50938,
177
+ "<|11.50|>": 50939,
178
+ "<|11.52|>": 50940,
179
+ "<|11.54|>": 50941,
180
+ "<|11.56|>": 50942,
181
+ "<|11.58|>": 50943,
182
+ "<|11.60|>": 50944,
183
+ "<|11.62|>": 50945,
184
+ "<|11.64|>": 50946,
185
+ "<|11.66|>": 50947,
186
+ "<|11.68|>": 50948,
187
+ "<|11.70|>": 50949,
188
+ "<|11.72|>": 50950,
189
+ "<|11.74|>": 50951,
190
+ "<|11.76|>": 50952,
191
+ "<|11.78|>": 50953,
192
+ "<|11.80|>": 50954,
193
+ "<|11.82|>": 50955,
194
+ "<|11.84|>": 50956,
195
+ "<|11.86|>": 50957,
196
+ "<|11.88|>": 50958,
197
+ "<|11.90|>": 50959,
198
+ "<|11.92|>": 50960,
199
+ "<|11.94|>": 50961,
200
+ "<|11.96|>": 50962,
201
+ "<|11.98|>": 50963,
202
+ "<|12.00|>": 50964,
203
+ "<|12.02|>": 50965,
204
+ "<|12.04|>": 50966,
205
+ "<|12.06|>": 50967,
206
+ "<|12.08|>": 50968,
207
+ "<|12.10|>": 50969,
208
+ "<|12.12|>": 50970,
209
+ "<|12.14|>": 50971,
210
+ "<|12.16|>": 50972,
211
+ "<|12.18|>": 50973,
212
+ "<|12.20|>": 50974,
213
+ "<|12.22|>": 50975,
214
+ "<|12.24|>": 50976,
215
+ "<|12.26|>": 50977,
216
+ "<|12.28|>": 50978,
217
+ "<|12.30|>": 50979,
218
+ "<|12.32|>": 50980,
219
+ "<|12.34|>": 50981,
220
+ "<|12.36|>": 50982,
221
+ "<|12.38|>": 50983,
222
+ "<|12.40|>": 50984,
223
+ "<|12.42|>": 50985,
224
+ "<|12.44|>": 50986,
225
+ "<|12.46|>": 50987,
226
+ "<|12.48|>": 50988,
227
+ "<|12.50|>": 50989,
228
+ "<|12.52|>": 50990,
229
+ "<|12.54|>": 50991,
230
+ "<|12.56|>": 50992,
231
+ "<|12.58|>": 50993,
232
+ "<|12.60|>": 50994,
233
+ "<|12.62|>": 50995,
234
+ "<|12.64|>": 50996,
235
+ "<|12.66|>": 50997,
236
+ "<|12.68|>": 50998,
237
+ "<|12.70|>": 50999,
238
+ "<|12.72|>": 51000,
239
+ "<|12.74|>": 51001,
240
+ "<|12.76|>": 51002,
241
+ "<|12.78|>": 51003,
242
+ "<|12.80|>": 51004,
243
+ "<|12.82|>": 51005,
244
+ "<|12.84|>": 51006,
245
+ "<|12.86|>": 51007,
246
+ "<|12.88|>": 51008,
247
+ "<|12.90|>": 51009,
248
+ "<|12.92|>": 51010,
249
+ "<|12.94|>": 51011,
250
+ "<|12.96|>": 51012,
251
+ "<|12.98|>": 51013,
252
+ "<|13.00|>": 51014,
253
+ "<|13.02|>": 51015,
254
+ "<|13.04|>": 51016,
255
+ "<|13.06|>": 51017,
256
+ "<|13.08|>": 51018,
257
+ "<|13.10|>": 51019,
258
+ "<|13.12|>": 51020,
259
+ "<|13.14|>": 51021,
260
+ "<|13.16|>": 51022,
261
+ "<|13.18|>": 51023,
262
+ "<|13.20|>": 51024,
263
+ "<|13.22|>": 51025,
264
+ "<|13.24|>": 51026,
265
+ "<|13.26|>": 51027,
266
+ "<|13.28|>": 51028,
267
+ "<|13.30|>": 51029,
268
+ "<|13.32|>": 51030,
269
+ "<|13.34|>": 51031,
270
+ "<|13.36|>": 51032,
271
+ "<|13.38|>": 51033,
272
+ "<|13.40|>": 51034,
273
+ "<|13.42|>": 51035,
274
+ "<|13.44|>": 51036,
275
+ "<|13.46|>": 51037,
276
+ "<|13.48|>": 51038,
277
+ "<|13.50|>": 51039,
278
+ "<|13.52|>": 51040,
279
+ "<|13.54|>": 51041,
280
+ "<|13.56|>": 51042,
281
+ "<|13.58|>": 51043,
282
+ "<|13.60|>": 51044,
283
+ "<|13.62|>": 51045,
284
+ "<|13.64|>": 51046,
285
+ "<|13.66|>": 51047,
286
+ "<|13.68|>": 51048,
287
+ "<|13.70|>": 51049,
288
+ "<|13.72|>": 51050,
289
+ "<|13.74|>": 51051,
290
+ "<|13.76|>": 51052,
291
+ "<|13.78|>": 51053,
292
+ "<|13.80|>": 51054,
293
+ "<|13.82|>": 51055,
294
+ "<|13.84|>": 51056,
295
+ "<|13.86|>": 51057,
296
+ "<|13.88|>": 51058,
297
+ "<|13.90|>": 51059,
298
+ "<|13.92|>": 51060,
299
+ "<|13.94|>": 51061,
300
+ "<|13.96|>": 51062,
301
+ "<|13.98|>": 51063,
302
+ "<|14.00|>": 51064,
303
+ "<|14.02|>": 51065,
304
+ "<|14.04|>": 51066,
305
+ "<|14.06|>": 51067,
306
+ "<|14.08|>": 51068,
307
+ "<|14.10|>": 51069,
308
+ "<|14.12|>": 51070,
309
+ "<|14.14|>": 51071,
310
+ "<|14.16|>": 51072,
311
+ "<|14.18|>": 51073,
312
+ "<|14.20|>": 51074,
313
+ "<|14.22|>": 51075,
314
+ "<|14.24|>": 51076,
315
+ "<|14.26|>": 51077,
316
+ "<|14.28|>": 51078,
317
+ "<|14.30|>": 51079,
318
+ "<|14.32|>": 51080,
319
+ "<|14.34|>": 51081,
320
+ "<|14.36|>": 51082,
321
+ "<|14.38|>": 51083,
322
+ "<|14.40|>": 51084,
323
+ "<|14.42|>": 51085,
324
+ "<|14.44|>": 51086,
325
+ "<|14.46|>": 51087,
326
+ "<|14.48|>": 51088,
327
+ "<|14.50|>": 51089,
328
+ "<|14.52|>": 51090,
329
+ "<|14.54|>": 51091,
330
+ "<|14.56|>": 51092,
331
+ "<|14.58|>": 51093,
332
+ "<|14.60|>": 51094,
333
+ "<|14.62|>": 51095,
334
+ "<|14.64|>": 51096,
335
+ "<|14.66|>": 51097,
336
+ "<|14.68|>": 51098,
337
+ "<|14.70|>": 51099,
338
+ "<|14.72|>": 51100,
339
+ "<|14.74|>": 51101,
340
+ "<|14.76|>": 51102,
341
+ "<|14.78|>": 51103,
342
+ "<|14.80|>": 51104,
343
+ "<|14.82|>": 51105,
344
+ "<|14.84|>": 51106,
345
+ "<|14.86|>": 51107,
346
+ "<|14.88|>": 51108,
347
+ "<|14.90|>": 51109,
348
+ "<|14.92|>": 51110,
349
+ "<|14.94|>": 51111,
350
+ "<|14.96|>": 51112,
351
+ "<|14.98|>": 51113,
352
+ "<|15.00|>": 51114,
353
+ "<|15.02|>": 51115,
354
+ "<|15.04|>": 51116,
355
+ "<|15.06|>": 51117,
356
+ "<|15.08|>": 51118,
357
+ "<|15.10|>": 51119,
358
+ "<|15.12|>": 51120,
359
+ "<|15.14|>": 51121,
360
+ "<|15.16|>": 51122,
361
+ "<|15.18|>": 51123,
362
+ "<|15.20|>": 51124,
363
+ "<|15.22|>": 51125,
364
+ "<|15.24|>": 51126,
365
+ "<|15.26|>": 51127,
366
+ "<|15.28|>": 51128,
367
+ "<|15.30|>": 51129,
368
+ "<|15.32|>": 51130,
369
+ "<|15.34|>": 51131,
370
+ "<|15.36|>": 51132,
371
+ "<|15.38|>": 51133,
372
+ "<|15.40|>": 51134,
373
+ "<|15.42|>": 51135,
374
+ "<|15.44|>": 51136,
375
+ "<|15.46|>": 51137,
376
+ "<|15.48|>": 51138,
377
+ "<|15.50|>": 51139,
378
+ "<|15.52|>": 51140,
379
+ "<|15.54|>": 51141,
380
+ "<|15.56|>": 51142,
381
+ "<|15.58|>": 51143,
382
+ "<|15.60|>": 51144,
383
+ "<|15.62|>": 51145,
384
+ "<|15.64|>": 51146,
385
+ "<|15.66|>": 51147,
386
+ "<|15.68|>": 51148,
387
+ "<|15.70|>": 51149,
388
+ "<|15.72|>": 51150,
389
+ "<|15.74|>": 51151,
390
+ "<|15.76|>": 51152,
391
+ "<|15.78|>": 51153,
392
+ "<|15.80|>": 51154,
393
+ "<|15.82|>": 51155,
394
+ "<|15.84|>": 51156,
395
+ "<|15.86|>": 51157,
396
+ "<|15.88|>": 51158,
397
+ "<|15.90|>": 51159,
398
+ "<|15.92|>": 51160,
399
+ "<|15.94|>": 51161,
400
+ "<|15.96|>": 51162,
401
+ "<|15.98|>": 51163,
402
+ "<|16.00|>": 51164,
403
+ "<|16.02|>": 51165,
404
+ "<|16.04|>": 51166,
405
+ "<|16.06|>": 51167,
406
+ "<|16.08|>": 51168,
407
+ "<|16.10|>": 51169,
408
+ "<|16.12|>": 51170,
409
+ "<|16.14|>": 51171,
410
+ "<|16.16|>": 51172,
411
+ "<|16.18|>": 51173,
412
+ "<|16.20|>": 51174,
413
+ "<|16.22|>": 51175,
414
+ "<|16.24|>": 51176,
415
+ "<|16.26|>": 51177,
416
+ "<|16.28|>": 51178,
417
+ "<|16.30|>": 51179,
418
+ "<|16.32|>": 51180,
419
+ "<|16.34|>": 51181,
420
+ "<|16.36|>": 51182,
421
+ "<|16.38|>": 51183,
422
+ "<|16.40|>": 51184,
423
+ "<|16.42|>": 51185,
424
+ "<|16.44|>": 51186,
425
+ "<|16.46|>": 51187,
426
+ "<|16.48|>": 51188,
427
+ "<|16.50|>": 51189,
428
+ "<|16.52|>": 51190,
429
+ "<|16.54|>": 51191,
430
+ "<|16.56|>": 51192,
431
+ "<|16.58|>": 51193,
432
+ "<|16.60|>": 51194,
433
+ "<|16.62|>": 51195,
434
+ "<|16.64|>": 51196,
435
+ "<|16.66|>": 51197,
436
+ "<|16.68|>": 51198,
437
+ "<|16.70|>": 51199,
438
+ "<|16.72|>": 51200,
439
+ "<|16.74|>": 51201,
440
+ "<|16.76|>": 51202,
441
+ "<|16.78|>": 51203,
442
+ "<|16.80|>": 51204,
443
+ "<|16.82|>": 51205,
444
+ "<|16.84|>": 51206,
445
+ "<|16.86|>": 51207,
446
+ "<|16.88|>": 51208,
447
+ "<|16.90|>": 51209,
448
+ "<|16.92|>": 51210,
449
+ "<|16.94|>": 51211,
450
+ "<|16.96|>": 51212,
451
+ "<|16.98|>": 51213,
452
+ "<|17.00|>": 51214,
453
+ "<|17.02|>": 51215,
454
+ "<|17.04|>": 51216,
455
+ "<|17.06|>": 51217,
456
+ "<|17.08|>": 51218,
457
+ "<|17.10|>": 51219,
458
+ "<|17.12|>": 51220,
459
+ "<|17.14|>": 51221,
460
+ "<|17.16|>": 51222,
461
+ "<|17.18|>": 51223,
462
+ "<|17.20|>": 51224,
463
+ "<|17.22|>": 51225,
464
+ "<|17.24|>": 51226,
465
+ "<|17.26|>": 51227,
466
+ "<|17.28|>": 51228,
467
+ "<|17.30|>": 51229,
468
+ "<|17.32|>": 51230,
469
+ "<|17.34|>": 51231,
470
+ "<|17.36|>": 51232,
471
+ "<|17.38|>": 51233,
472
+ "<|17.40|>": 51234,
473
+ "<|17.42|>": 51235,
474
+ "<|17.44|>": 51236,
475
+ "<|17.46|>": 51237,
476
+ "<|17.48|>": 51238,
477
+ "<|17.50|>": 51239,
478
+ "<|17.52|>": 51240,
479
+ "<|17.54|>": 51241,
480
+ "<|17.56|>": 51242,
481
+ "<|17.58|>": 51243,
482
+ "<|17.60|>": 51244,
483
+ "<|17.62|>": 51245,
484
+ "<|17.64|>": 51246,
485
+ "<|17.66|>": 51247,
486
+ "<|17.68|>": 51248,
487
+ "<|17.70|>": 51249,
488
+ "<|17.72|>": 51250,
489
+ "<|17.74|>": 51251,
490
+ "<|17.76|>": 51252,
491
+ "<|17.78|>": 51253,
492
+ "<|17.80|>": 51254,
493
+ "<|17.82|>": 51255,
494
+ "<|17.84|>": 51256,
495
+ "<|17.86|>": 51257,
496
+ "<|17.88|>": 51258,
497
+ "<|17.90|>": 51259,
498
+ "<|17.92|>": 51260,
499
+ "<|17.94|>": 51261,
500
+ "<|17.96|>": 51262,
501
+ "<|17.98|>": 51263,
502
+ "<|18.00|>": 51264,
503
+ "<|18.02|>": 51265,
504
+ "<|18.04|>": 51266,
505
+ "<|18.06|>": 51267,
506
+ "<|18.08|>": 51268,
507
+ "<|18.10|>": 51269,
508
+ "<|18.12|>": 51270,
509
+ "<|18.14|>": 51271,
510
+ "<|18.16|>": 51272,
511
+ "<|18.18|>": 51273,
512
+ "<|18.20|>": 51274,
513
+ "<|18.22|>": 51275,
514
+ "<|18.24|>": 51276,
515
+ "<|18.26|>": 51277,
516
+ "<|18.28|>": 51278,
517
+ "<|18.30|>": 51279,
518
+ "<|18.32|>": 51280,
519
+ "<|18.34|>": 51281,
520
+ "<|18.36|>": 51282,
521
+ "<|18.38|>": 51283,
522
+ "<|18.40|>": 51284,
523
+ "<|18.42|>": 51285,
524
+ "<|18.44|>": 51286,
525
+ "<|18.46|>": 51287,
526
+ "<|18.48|>": 51288,
527
+ "<|18.50|>": 51289,
528
+ "<|18.52|>": 51290,
529
+ "<|18.54|>": 51291,
530
+ "<|18.56|>": 51292,
531
+ "<|18.58|>": 51293,
532
+ "<|18.60|>": 51294,
533
+ "<|18.62|>": 51295,
534
+ "<|18.64|>": 51296,
535
+ "<|18.66|>": 51297,
536
+ "<|18.68|>": 51298,
537
+ "<|18.70|>": 51299,
538
+ "<|18.72|>": 51300,
539
+ "<|18.74|>": 51301,
540
+ "<|18.76|>": 51302,
541
+ "<|18.78|>": 51303,
542
+ "<|18.80|>": 51304,
543
+ "<|18.82|>": 51305,
544
+ "<|18.84|>": 51306,
545
+ "<|18.86|>": 51307,
546
+ "<|18.88|>": 51308,
547
+ "<|18.90|>": 51309,
548
+ "<|18.92|>": 51310,
549
+ "<|18.94|>": 51311,
550
+ "<|18.96|>": 51312,
551
+ "<|18.98|>": 51313,
552
+ "<|19.00|>": 51314,
553
+ "<|19.02|>": 51315,
554
+ "<|19.04|>": 51316,
555
+ "<|19.06|>": 51317,
556
+ "<|19.08|>": 51318,
557
+ "<|19.10|>": 51319,
558
+ "<|19.12|>": 51320,
559
+ "<|19.14|>": 51321,
560
+ "<|19.16|>": 51322,
561
+ "<|19.18|>": 51323,
562
+ "<|19.20|>": 51324,
563
+ "<|19.22|>": 51325,
564
+ "<|19.24|>": 51326,
565
+ "<|19.26|>": 51327,
566
+ "<|19.28|>": 51328,
567
+ "<|19.30|>": 51329,
568
+ "<|19.32|>": 51330,
569
+ "<|19.34|>": 51331,
570
+ "<|19.36|>": 51332,
571
+ "<|19.38|>": 51333,
572
+ "<|19.40|>": 51334,
573
+ "<|19.42|>": 51335,
574
+ "<|19.44|>": 51336,
575
+ "<|19.46|>": 51337,
576
+ "<|19.48|>": 51338,
577
+ "<|19.50|>": 51339,
578
+ "<|19.52|>": 51340,
579
+ "<|19.54|>": 51341,
580
+ "<|19.56|>": 51342,
581
+ "<|19.58|>": 51343,
582
+ "<|19.60|>": 51344,
583
+ "<|19.62|>": 51345,
584
+ "<|19.64|>": 51346,
585
+ "<|19.66|>": 51347,
586
+ "<|19.68|>": 51348,
587
+ "<|19.70|>": 51349,
588
+ "<|19.72|>": 51350,
589
+ "<|19.74|>": 51351,
590
+ "<|19.76|>": 51352,
591
+ "<|19.78|>": 51353,
592
+ "<|19.80|>": 51354,
593
+ "<|19.82|>": 51355,
594
+ "<|19.84|>": 51356,
595
+ "<|19.86|>": 51357,
596
+ "<|19.88|>": 51358,
597
+ "<|19.90|>": 51359,
598
+ "<|19.92|>": 51360,
599
+ "<|19.94|>": 51361,
600
+ "<|19.96|>": 51362,
601
+ "<|19.98|>": 51363,
602
+ "<|2.00|>": 50464,
603
+ "<|2.02|>": 50465,
604
+ "<|2.04|>": 50466,
605
+ "<|2.06|>": 50467,
606
+ "<|2.08|>": 50468,
607
+ "<|2.10|>": 50469,
608
+ "<|2.12|>": 50470,
609
+ "<|2.14|>": 50471,
610
+ "<|2.16|>": 50472,
611
+ "<|2.18|>": 50473,
612
+ "<|2.20|>": 50474,
613
+ "<|2.22|>": 50475,
614
+ "<|2.24|>": 50476,
615
+ "<|2.26|>": 50477,
616
+ "<|2.28|>": 50478,
617
+ "<|2.30|>": 50479,
618
+ "<|2.32|>": 50480,
619
+ "<|2.34|>": 50481,
620
+ "<|2.36|>": 50482,
621
+ "<|2.38|>": 50483,
622
+ "<|2.40|>": 50484,
623
+ "<|2.42|>": 50485,
624
+ "<|2.44|>": 50486,
625
+ "<|2.46|>": 50487,
626
+ "<|2.48|>": 50488,
627
+ "<|2.50|>": 50489,
628
+ "<|2.52|>": 50490,
629
+ "<|2.54|>": 50491,
630
+ "<|2.56|>": 50492,
631
+ "<|2.58|>": 50493,
632
+ "<|2.60|>": 50494,
633
+ "<|2.62|>": 50495,
634
+ "<|2.64|>": 50496,
635
+ "<|2.66|>": 50497,
636
+ "<|2.68|>": 50498,
637
+ "<|2.70|>": 50499,
638
+ "<|2.72|>": 50500,
639
+ "<|2.74|>": 50501,
640
+ "<|2.76|>": 50502,
641
+ "<|2.78|>": 50503,
642
+ "<|2.80|>": 50504,
643
+ "<|2.82|>": 50505,
644
+ "<|2.84|>": 50506,
645
+ "<|2.86|>": 50507,
646
+ "<|2.88|>": 50508,
647
+ "<|2.90|>": 50509,
648
+ "<|2.92|>": 50510,
649
+ "<|2.94|>": 50511,
650
+ "<|2.96|>": 50512,
651
+ "<|2.98|>": 50513,
652
+ "<|20.00|>": 51364,
653
+ "<|20.02|>": 51365,
654
+ "<|20.04|>": 51366,
655
+ "<|20.06|>": 51367,
656
+ "<|20.08|>": 51368,
657
+ "<|20.10|>": 51369,
658
+ "<|20.12|>": 51370,
659
+ "<|20.14|>": 51371,
660
+ "<|20.16|>": 51372,
661
+ "<|20.18|>": 51373,
662
+ "<|20.20|>": 51374,
663
+ "<|20.22|>": 51375,
664
+ "<|20.24|>": 51376,
665
+ "<|20.26|>": 51377,
666
+ "<|20.28|>": 51378,
667
+ "<|20.30|>": 51379,
668
+ "<|20.32|>": 51380,
669
+ "<|20.34|>": 51381,
670
+ "<|20.36|>": 51382,
671
+ "<|20.38|>": 51383,
672
+ "<|20.40|>": 51384,
673
+ "<|20.42|>": 51385,
674
+ "<|20.44|>": 51386,
675
+ "<|20.46|>": 51387,
676
+ "<|20.48|>": 51388,
677
+ "<|20.50|>": 51389,
678
+ "<|20.52|>": 51390,
679
+ "<|20.54|>": 51391,
680
+ "<|20.56|>": 51392,
681
+ "<|20.58|>": 51393,
682
+ "<|20.60|>": 51394,
683
+ "<|20.62|>": 51395,
684
+ "<|20.64|>": 51396,
685
+ "<|20.66|>": 51397,
686
+ "<|20.68|>": 51398,
687
+ "<|20.70|>": 51399,
688
+ "<|20.72|>": 51400,
689
+ "<|20.74|>": 51401,
690
+ "<|20.76|>": 51402,
691
+ "<|20.78|>": 51403,
692
+ "<|20.80|>": 51404,
693
+ "<|20.82|>": 51405,
694
+ "<|20.84|>": 51406,
695
+ "<|20.86|>": 51407,
696
+ "<|20.88|>": 51408,
697
+ "<|20.90|>": 51409,
698
+ "<|20.92|>": 51410,
699
+ "<|20.94|>": 51411,
700
+ "<|20.96|>": 51412,
701
+ "<|20.98|>": 51413,
702
+ "<|21.00|>": 51414,
703
+ "<|21.02|>": 51415,
704
+ "<|21.04|>": 51416,
705
+ "<|21.06|>": 51417,
706
+ "<|21.08|>": 51418,
707
+ "<|21.10|>": 51419,
708
+ "<|21.12|>": 51420,
709
+ "<|21.14|>": 51421,
710
+ "<|21.16|>": 51422,
711
+ "<|21.18|>": 51423,
712
+ "<|21.20|>": 51424,
713
+ "<|21.22|>": 51425,
714
+ "<|21.24|>": 51426,
715
+ "<|21.26|>": 51427,
716
+ "<|21.28|>": 51428,
717
+ "<|21.30|>": 51429,
718
+ "<|21.32|>": 51430,
719
+ "<|21.34|>": 51431,
720
+ "<|21.36|>": 51432,
721
+ "<|21.38|>": 51433,
722
+ "<|21.40|>": 51434,
723
+ "<|21.42|>": 51435,
724
+ "<|21.44|>": 51436,
725
+ "<|21.46|>": 51437,
726
+ "<|21.48|>": 51438,
727
+ "<|21.50|>": 51439,
728
+ "<|21.52|>": 51440,
729
+ "<|21.54|>": 51441,
730
+ "<|21.56|>": 51442,
731
+ "<|21.58|>": 51443,
732
+ "<|21.60|>": 51444,
733
+ "<|21.62|>": 51445,
734
+ "<|21.64|>": 51446,
735
+ "<|21.66|>": 51447,
736
+ "<|21.68|>": 51448,
737
+ "<|21.70|>": 51449,
738
+ "<|21.72|>": 51450,
739
+ "<|21.74|>": 51451,
740
+ "<|21.76|>": 51452,
741
+ "<|21.78|>": 51453,
742
+ "<|21.80|>": 51454,
743
+ "<|21.82|>": 51455,
744
+ "<|21.84|>": 51456,
745
+ "<|21.86|>": 51457,
746
+ "<|21.88|>": 51458,
747
+ "<|21.90|>": 51459,
748
+ "<|21.92|>": 51460,
749
+ "<|21.94|>": 51461,
750
+ "<|21.96|>": 51462,
751
+ "<|21.98|>": 51463,
752
+ "<|22.00|>": 51464,
753
+ "<|22.02|>": 51465,
754
+ "<|22.04|>": 51466,
755
+ "<|22.06|>": 51467,
756
+ "<|22.08|>": 51468,
757
+ "<|22.10|>": 51469,
758
+ "<|22.12|>": 51470,
759
+ "<|22.14|>": 51471,
760
+ "<|22.16|>": 51472,
761
+ "<|22.18|>": 51473,
762
+ "<|22.20|>": 51474,
763
+ "<|22.22|>": 51475,
764
+ "<|22.24|>": 51476,
765
+ "<|22.26|>": 51477,
766
+ "<|22.28|>": 51478,
767
+ "<|22.30|>": 51479,
768
+ "<|22.32|>": 51480,
769
+ "<|22.34|>": 51481,
770
+ "<|22.36|>": 51482,
771
+ "<|22.38|>": 51483,
772
+ "<|22.40|>": 51484,
773
+ "<|22.42|>": 51485,
774
+ "<|22.44|>": 51486,
775
+ "<|22.46|>": 51487,
776
+ "<|22.48|>": 51488,
777
+ "<|22.50|>": 51489,
778
+ "<|22.52|>": 51490,
779
+ "<|22.54|>": 51491,
780
+ "<|22.56|>": 51492,
781
+ "<|22.58|>": 51493,
782
+ "<|22.60|>": 51494,
783
+ "<|22.62|>": 51495,
784
+ "<|22.64|>": 51496,
785
+ "<|22.66|>": 51497,
786
+ "<|22.68|>": 51498,
787
+ "<|22.70|>": 51499,
788
+ "<|22.72|>": 51500,
789
+ "<|22.74|>": 51501,
790
+ "<|22.76|>": 51502,
791
+ "<|22.78|>": 51503,
792
+ "<|22.80|>": 51504,
793
+ "<|22.82|>": 51505,
794
+ "<|22.84|>": 51506,
795
+ "<|22.86|>": 51507,
796
+ "<|22.88|>": 51508,
797
+ "<|22.90|>": 51509,
798
+ "<|22.92|>": 51510,
799
+ "<|22.94|>": 51511,
800
+ "<|22.96|>": 51512,
801
+ "<|22.98|>": 51513,
802
+ "<|23.00|>": 51514,
803
+ "<|23.02|>": 51515,
804
+ "<|23.04|>": 51516,
805
+ "<|23.06|>": 51517,
806
+ "<|23.08|>": 51518,
807
+ "<|23.10|>": 51519,
808
+ "<|23.12|>": 51520,
809
+ "<|23.14|>": 51521,
810
+ "<|23.16|>": 51522,
811
+ "<|23.18|>": 51523,
812
+ "<|23.20|>": 51524,
813
+ "<|23.22|>": 51525,
814
+ "<|23.24|>": 51526,
815
+ "<|23.26|>": 51527,
816
+ "<|23.28|>": 51528,
817
+ "<|23.30|>": 51529,
818
+ "<|23.32|>": 51530,
819
+ "<|23.34|>": 51531,
820
+ "<|23.36|>": 51532,
821
+ "<|23.38|>": 51533,
822
+ "<|23.40|>": 51534,
823
+ "<|23.42|>": 51535,
824
+ "<|23.44|>": 51536,
825
+ "<|23.46|>": 51537,
826
+ "<|23.48|>": 51538,
827
+ "<|23.50|>": 51539,
828
+ "<|23.52|>": 51540,
829
+ "<|23.54|>": 51541,
830
+ "<|23.56|>": 51542,
831
+ "<|23.58|>": 51543,
832
+ "<|23.60|>": 51544,
833
+ "<|23.62|>": 51545,
834
+ "<|23.64|>": 51546,
835
+ "<|23.66|>": 51547,
836
+ "<|23.68|>": 51548,
837
+ "<|23.70|>": 51549,
838
+ "<|23.72|>": 51550,
839
+ "<|23.74|>": 51551,
840
+ "<|23.76|>": 51552,
841
+ "<|23.78|>": 51553,
842
+ "<|23.80|>": 51554,
843
+ "<|23.82|>": 51555,
844
+ "<|23.84|>": 51556,
845
+ "<|23.86|>": 51557,
846
+ "<|23.88|>": 51558,
847
+ "<|23.90|>": 51559,
848
+ "<|23.92|>": 51560,
849
+ "<|23.94|>": 51561,
850
+ "<|23.96|>": 51562,
851
+ "<|23.98|>": 51563,
852
+ "<|24.00|>": 51564,
853
+ "<|24.02|>": 51565,
854
+ "<|24.04|>": 51566,
855
+ "<|24.06|>": 51567,
856
+ "<|24.08|>": 51568,
857
+ "<|24.10|>": 51569,
858
+ "<|24.12|>": 51570,
859
+ "<|24.14|>": 51571,
860
+ "<|24.16|>": 51572,
861
+ "<|24.18|>": 51573,
862
+ "<|24.20|>": 51574,
863
+ "<|24.22|>": 51575,
864
+ "<|24.24|>": 51576,
865
+ "<|24.26|>": 51577,
866
+ "<|24.28|>": 51578,
867
+ "<|24.30|>": 51579,
868
+ "<|24.32|>": 51580,
869
+ "<|24.34|>": 51581,
870
+ "<|24.36|>": 51582,
871
+ "<|24.38|>": 51583,
872
+ "<|24.40|>": 51584,
873
+ "<|24.42|>": 51585,
874
+ "<|24.44|>": 51586,
875
+ "<|24.46|>": 51587,
876
+ "<|24.48|>": 51588,
877
+ "<|24.50|>": 51589,
878
+ "<|24.52|>": 51590,
879
+ "<|24.54|>": 51591,
880
+ "<|24.56|>": 51592,
881
+ "<|24.58|>": 51593,
882
+ "<|24.60|>": 51594,
883
+ "<|24.62|>": 51595,
884
+ "<|24.64|>": 51596,
885
+ "<|24.66|>": 51597,
886
+ "<|24.68|>": 51598,
887
+ "<|24.70|>": 51599,
888
+ "<|24.72|>": 51600,
889
+ "<|24.74|>": 51601,
890
+ "<|24.76|>": 51602,
891
+ "<|24.78|>": 51603,
892
+ "<|24.80|>": 51604,
893
+ "<|24.82|>": 51605,
894
+ "<|24.84|>": 51606,
895
+ "<|24.86|>": 51607,
896
+ "<|24.88|>": 51608,
897
+ "<|24.90|>": 51609,
898
+ "<|24.92|>": 51610,
899
+ "<|24.94|>": 51611,
900
+ "<|24.96|>": 51612,
901
+ "<|24.98|>": 51613,
902
+ "<|25.00|>": 51614,
903
+ "<|25.02|>": 51615,
904
+ "<|25.04|>": 51616,
905
+ "<|25.06|>": 51617,
906
+ "<|25.08|>": 51618,
907
+ "<|25.10|>": 51619,
908
+ "<|25.12|>": 51620,
909
+ "<|25.14|>": 51621,
910
+ "<|25.16|>": 51622,
911
+ "<|25.18|>": 51623,
912
+ "<|25.20|>": 51624,
913
+ "<|25.22|>": 51625,
914
+ "<|25.24|>": 51626,
915
+ "<|25.26|>": 51627,
916
+ "<|25.28|>": 51628,
917
+ "<|25.30|>": 51629,
918
+ "<|25.32|>": 51630,
919
+ "<|25.34|>": 51631,
920
+ "<|25.36|>": 51632,
921
+ "<|25.38|>": 51633,
922
+ "<|25.40|>": 51634,
923
+ "<|25.42|>": 51635,
924
+ "<|25.44|>": 51636,
925
+ "<|25.46|>": 51637,
926
+ "<|25.48|>": 51638,
927
+ "<|25.50|>": 51639,
928
+ "<|25.52|>": 51640,
929
+ "<|25.54|>": 51641,
930
+ "<|25.56|>": 51642,
931
+ "<|25.58|>": 51643,
932
+ "<|25.60|>": 51644,
933
+ "<|25.62|>": 51645,
934
+ "<|25.64|>": 51646,
935
+ "<|25.66|>": 51647,
936
+ "<|25.68|>": 51648,
937
+ "<|25.70|>": 51649,
938
+ "<|25.72|>": 51650,
939
+ "<|25.74|>": 51651,
940
+ "<|25.76|>": 51652,
941
+ "<|25.78|>": 51653,
942
+ "<|25.80|>": 51654,
943
+ "<|25.82|>": 51655,
944
+ "<|25.84|>": 51656,
945
+ "<|25.86|>": 51657,
946
+ "<|25.88|>": 51658,
947
+ "<|25.90|>": 51659,
948
+ "<|25.92|>": 51660,
949
+ "<|25.94|>": 51661,
950
+ "<|25.96|>": 51662,
951
+ "<|25.98|>": 51663,
952
+ "<|26.00|>": 51664,
953
+ "<|26.02|>": 51665,
954
+ "<|26.04|>": 51666,
955
+ "<|26.06|>": 51667,
956
+ "<|26.08|>": 51668,
957
+ "<|26.10|>": 51669,
958
+ "<|26.12|>": 51670,
959
+ "<|26.14|>": 51671,
960
+ "<|26.16|>": 51672,
961
+ "<|26.18|>": 51673,
962
+ "<|26.20|>": 51674,
963
+ "<|26.22|>": 51675,
964
+ "<|26.24|>": 51676,
965
+ "<|26.26|>": 51677,
966
+ "<|26.28|>": 51678,
967
+ "<|26.30|>": 51679,
968
+ "<|26.32|>": 51680,
969
+ "<|26.34|>": 51681,
970
+ "<|26.36|>": 51682,
971
+ "<|26.38|>": 51683,
972
+ "<|26.40|>": 51684,
973
+ "<|26.42|>": 51685,
974
+ "<|26.44|>": 51686,
975
+ "<|26.46|>": 51687,
976
+ "<|26.48|>": 51688,
977
+ "<|26.50|>": 51689,
978
+ "<|26.52|>": 51690,
979
+ "<|26.54|>": 51691,
980
+ "<|26.56|>": 51692,
981
+ "<|26.58|>": 51693,
982
+ "<|26.60|>": 51694,
983
+ "<|26.62|>": 51695,
984
+ "<|26.64|>": 51696,
985
+ "<|26.66|>": 51697,
986
+ "<|26.68|>": 51698,
987
+ "<|26.70|>": 51699,
988
+ "<|26.72|>": 51700,
989
+ "<|26.74|>": 51701,
990
+ "<|26.76|>": 51702,
991
+ "<|26.78|>": 51703,
992
+ "<|26.80|>": 51704,
993
+ "<|26.82|>": 51705,
994
+ "<|26.84|>": 51706,
995
+ "<|26.86|>": 51707,
996
+ "<|26.88|>": 51708,
997
+ "<|26.90|>": 51709,
998
+ "<|26.92|>": 51710,
999
+ "<|26.94|>": 51711,
1000
+ "<|26.96|>": 51712,
1001
+ "<|26.98|>": 51713,
1002
+ "<|27.00|>": 51714,
1003
+ "<|27.02|>": 51715,
1004
+ "<|27.04|>": 51716,
1005
+ "<|27.06|>": 51717,
1006
+ "<|27.08|>": 51718,
1007
+ "<|27.10|>": 51719,
1008
+ "<|27.12|>": 51720,
1009
+ "<|27.14|>": 51721,
1010
+ "<|27.16|>": 51722,
1011
+ "<|27.18|>": 51723,
1012
+ "<|27.20|>": 51724,
1013
+ "<|27.22|>": 51725,
1014
+ "<|27.24|>": 51726,
1015
+ "<|27.26|>": 51727,
1016
+ "<|27.28|>": 51728,
1017
+ "<|27.30|>": 51729,
1018
+ "<|27.32|>": 51730,
1019
+ "<|27.34|>": 51731,
1020
+ "<|27.36|>": 51732,
1021
+ "<|27.38|>": 51733,
1022
+ "<|27.40|>": 51734,
1023
+ "<|27.42|>": 51735,
1024
+ "<|27.44|>": 51736,
1025
+ "<|27.46|>": 51737,
1026
+ "<|27.48|>": 51738,
1027
+ "<|27.50|>": 51739,
1028
+ "<|27.52|>": 51740,
1029
+ "<|27.54|>": 51741,
1030
+ "<|27.56|>": 51742,
1031
+ "<|27.58|>": 51743,
1032
+ "<|27.60|>": 51744,
1033
+ "<|27.62|>": 51745,
1034
+ "<|27.64|>": 51746,
1035
+ "<|27.66|>": 51747,
1036
+ "<|27.68|>": 51748,
1037
+ "<|27.70|>": 51749,
1038
+ "<|27.72|>": 51750,
1039
+ "<|27.74|>": 51751,
1040
+ "<|27.76|>": 51752,
1041
+ "<|27.78|>": 51753,
1042
+ "<|27.80|>": 51754,
1043
+ "<|27.82|>": 51755,
1044
+ "<|27.84|>": 51756,
1045
+ "<|27.86|>": 51757,
1046
+ "<|27.88|>": 51758,
1047
+ "<|27.90|>": 51759,
1048
+ "<|27.92|>": 51760,
1049
+ "<|27.94|>": 51761,
1050
+ "<|27.96|>": 51762,
1051
+ "<|27.98|>": 51763,
1052
+ "<|28.00|>": 51764,
1053
+ "<|28.02|>": 51765,
1054
+ "<|28.04|>": 51766,
1055
+ "<|28.06|>": 51767,
1056
+ "<|28.08|>": 51768,
1057
+ "<|28.10|>": 51769,
1058
+ "<|28.12|>": 51770,
1059
+ "<|28.14|>": 51771,
1060
+ "<|28.16|>": 51772,
1061
+ "<|28.18|>": 51773,
1062
+ "<|28.20|>": 51774,
1063
+ "<|28.22|>": 51775,
1064
+ "<|28.24|>": 51776,
1065
+ "<|28.26|>": 51777,
1066
+ "<|28.28|>": 51778,
1067
+ "<|28.30|>": 51779,
1068
+ "<|28.32|>": 51780,
1069
+ "<|28.34|>": 51781,
1070
+ "<|28.36|>": 51782,
1071
+ "<|28.38|>": 51783,
1072
+ "<|28.40|>": 51784,
1073
+ "<|28.42|>": 51785,
1074
+ "<|28.44|>": 51786,
1075
+ "<|28.46|>": 51787,
1076
+ "<|28.48|>": 51788,
1077
+ "<|28.50|>": 51789,
1078
+ "<|28.52|>": 51790,
1079
+ "<|28.54|>": 51791,
1080
+ "<|28.56|>": 51792,
1081
+ "<|28.58|>": 51793,
1082
+ "<|28.60|>": 51794,
1083
+ "<|28.62|>": 51795,
1084
+ "<|28.64|>": 51796,
1085
+ "<|28.66|>": 51797,
1086
+ "<|28.68|>": 51798,
1087
+ "<|28.70|>": 51799,
1088
+ "<|28.72|>": 51800,
1089
+ "<|28.74|>": 51801,
1090
+ "<|28.76|>": 51802,
1091
+ "<|28.78|>": 51803,
1092
+ "<|28.80|>": 51804,
1093
+ "<|28.82|>": 51805,
1094
+ "<|28.84|>": 51806,
1095
+ "<|28.86|>": 51807,
1096
+ "<|28.88|>": 51808,
1097
+ "<|28.90|>": 51809,
1098
+ "<|28.92|>": 51810,
1099
+ "<|28.94|>": 51811,
1100
+ "<|28.96|>": 51812,
1101
+ "<|28.98|>": 51813,
1102
+ "<|29.00|>": 51814,
1103
+ "<|29.02|>": 51815,
1104
+ "<|29.04|>": 51816,
1105
+ "<|29.06|>": 51817,
1106
+ "<|29.08|>": 51818,
1107
+ "<|29.10|>": 51819,
1108
+ "<|29.12|>": 51820,
1109
+ "<|29.14|>": 51821,
1110
+ "<|29.16|>": 51822,
1111
+ "<|29.18|>": 51823,
1112
+ "<|29.20|>": 51824,
1113
+ "<|29.22|>": 51825,
1114
+ "<|29.24|>": 51826,
1115
+ "<|29.26|>": 51827,
1116
+ "<|29.28|>": 51828,
1117
+ "<|29.30|>": 51829,
1118
+ "<|29.32|>": 51830,
1119
+ "<|29.34|>": 51831,
1120
+ "<|29.36|>": 51832,
1121
+ "<|29.38|>": 51833,
1122
+ "<|29.40|>": 51834,
1123
+ "<|29.42|>": 51835,
1124
+ "<|29.44|>": 51836,
1125
+ "<|29.46|>": 51837,
1126
+ "<|29.48|>": 51838,
1127
+ "<|29.50|>": 51839,
1128
+ "<|29.52|>": 51840,
1129
+ "<|29.54|>": 51841,
1130
+ "<|29.56|>": 51842,
1131
+ "<|29.58|>": 51843,
1132
+ "<|29.60|>": 51844,
1133
+ "<|29.62|>": 51845,
1134
+ "<|29.64|>": 51846,
1135
+ "<|29.66|>": 51847,
1136
+ "<|29.68|>": 51848,
1137
+ "<|29.70|>": 51849,
1138
+ "<|29.72|>": 51850,
1139
+ "<|29.74|>": 51851,
1140
+ "<|29.76|>": 51852,
1141
+ "<|29.78|>": 51853,
1142
+ "<|29.80|>": 51854,
1143
+ "<|29.82|>": 51855,
1144
+ "<|29.84|>": 51856,
1145
+ "<|29.86|>": 51857,
1146
+ "<|29.88|>": 51858,
1147
+ "<|29.90|>": 51859,
1148
+ "<|29.92|>": 51860,
1149
+ "<|29.94|>": 51861,
1150
+ "<|29.96|>": 51862,
1151
+ "<|29.98|>": 51863,
1152
+ "<|3.00|>": 50514,
1153
+ "<|3.02|>": 50515,
1154
+ "<|3.04|>": 50516,
1155
+ "<|3.06|>": 50517,
1156
+ "<|3.08|>": 50518,
1157
+ "<|3.10|>": 50519,
1158
+ "<|3.12|>": 50520,
1159
+ "<|3.14|>": 50521,
1160
+ "<|3.16|>": 50522,
1161
+ "<|3.18|>": 50523,
1162
+ "<|3.20|>": 50524,
1163
+ "<|3.22|>": 50525,
1164
+ "<|3.24|>": 50526,
1165
+ "<|3.26|>": 50527,
1166
+ "<|3.28|>": 50528,
1167
+ "<|3.30|>": 50529,
1168
+ "<|3.32|>": 50530,
1169
+ "<|3.34|>": 50531,
1170
+ "<|3.36|>": 50532,
1171
+ "<|3.38|>": 50533,
1172
+ "<|3.40|>": 50534,
1173
+ "<|3.42|>": 50535,
1174
+ "<|3.44|>": 50536,
1175
+ "<|3.46|>": 50537,
1176
+ "<|3.48|>": 50538,
1177
+ "<|3.50|>": 50539,
1178
+ "<|3.52|>": 50540,
1179
+ "<|3.54|>": 50541,
1180
+ "<|3.56|>": 50542,
1181
+ "<|3.58|>": 50543,
1182
+ "<|3.60|>": 50544,
1183
+ "<|3.62|>": 50545,
1184
+ "<|3.64|>": 50546,
1185
+ "<|3.66|>": 50547,
1186
+ "<|3.68|>": 50548,
1187
+ "<|3.70|>": 50549,
1188
+ "<|3.72|>": 50550,
1189
+ "<|3.74|>": 50551,
1190
+ "<|3.76|>": 50552,
1191
+ "<|3.78|>": 50553,
1192
+ "<|3.80|>": 50554,
1193
+ "<|3.82|>": 50555,
1194
+ "<|3.84|>": 50556,
1195
+ "<|3.86|>": 50557,
1196
+ "<|3.88|>": 50558,
1197
+ "<|3.90|>": 50559,
1198
+ "<|3.92|>": 50560,
1199
+ "<|3.94|>": 50561,
1200
+ "<|3.96|>": 50562,
1201
+ "<|3.98|>": 50563,
1202
+ "<|30.00|>": 51864,
1203
+ "<|4.00|>": 50564,
1204
+ "<|4.02|>": 50565,
1205
+ "<|4.04|>": 50566,
1206
+ "<|4.06|>": 50567,
1207
+ "<|4.08|>": 50568,
1208
+ "<|4.10|>": 50569,
1209
+ "<|4.12|>": 50570,
1210
+ "<|4.14|>": 50571,
1211
+ "<|4.16|>": 50572,
1212
+ "<|4.18|>": 50573,
1213
+ "<|4.20|>": 50574,
1214
+ "<|4.22|>": 50575,
1215
+ "<|4.24|>": 50576,
1216
+ "<|4.26|>": 50577,
1217
+ "<|4.28|>": 50578,
1218
+ "<|4.30|>": 50579,
1219
+ "<|4.32|>": 50580,
1220
+ "<|4.34|>": 50581,
1221
+ "<|4.36|>": 50582,
1222
+ "<|4.38|>": 50583,
1223
+ "<|4.40|>": 50584,
1224
+ "<|4.42|>": 50585,
1225
+ "<|4.44|>": 50586,
1226
+ "<|4.46|>": 50587,
1227
+ "<|4.48|>": 50588,
1228
+ "<|4.50|>": 50589,
1229
+ "<|4.52|>": 50590,
1230
+ "<|4.54|>": 50591,
1231
+ "<|4.56|>": 50592,
1232
+ "<|4.58|>": 50593,
1233
+ "<|4.60|>": 50594,
1234
+ "<|4.62|>": 50595,
1235
+ "<|4.64|>": 50596,
1236
+ "<|4.66|>": 50597,
1237
+ "<|4.68|>": 50598,
1238
+ "<|4.70|>": 50599,
1239
+ "<|4.72|>": 50600,
1240
+ "<|4.74|>": 50601,
1241
+ "<|4.76|>": 50602,
1242
+ "<|4.78|>": 50603,
1243
+ "<|4.80|>": 50604,
1244
+ "<|4.82|>": 50605,
1245
+ "<|4.84|>": 50606,
1246
+ "<|4.86|>": 50607,
1247
+ "<|4.88|>": 50608,
1248
+ "<|4.90|>": 50609,
1249
+ "<|4.92|>": 50610,
1250
+ "<|4.94|>": 50611,
1251
+ "<|4.96|>": 50612,
1252
+ "<|4.98|>": 50613,
1253
+ "<|5.00|>": 50614,
1254
+ "<|5.02|>": 50615,
1255
+ "<|5.04|>": 50616,
1256
+ "<|5.06|>": 50617,
1257
+ "<|5.08|>": 50618,
1258
+ "<|5.10|>": 50619,
1259
+ "<|5.12|>": 50620,
1260
+ "<|5.14|>": 50621,
1261
+ "<|5.16|>": 50622,
1262
+ "<|5.18|>": 50623,
1263
+ "<|5.20|>": 50624,
1264
+ "<|5.22|>": 50625,
1265
+ "<|5.24|>": 50626,
1266
+ "<|5.26|>": 50627,
1267
+ "<|5.28|>": 50628,
1268
+ "<|5.30|>": 50629,
1269
+ "<|5.32|>": 50630,
1270
+ "<|5.34|>": 50631,
1271
+ "<|5.36|>": 50632,
1272
+ "<|5.38|>": 50633,
1273
+ "<|5.40|>": 50634,
1274
+ "<|5.42|>": 50635,
1275
+ "<|5.44|>": 50636,
1276
+ "<|5.46|>": 50637,
1277
+ "<|5.48|>": 50638,
1278
+ "<|5.50|>": 50639,
1279
+ "<|5.52|>": 50640,
1280
+ "<|5.54|>": 50641,
1281
+ "<|5.56|>": 50642,
1282
+ "<|5.58|>": 50643,
1283
+ "<|5.60|>": 50644,
1284
+ "<|5.62|>": 50645,
1285
+ "<|5.64|>": 50646,
1286
+ "<|5.66|>": 50647,
1287
+ "<|5.68|>": 50648,
1288
+ "<|5.70|>": 50649,
1289
+ "<|5.72|>": 50650,
1290
+ "<|5.74|>": 50651,
1291
+ "<|5.76|>": 50652,
1292
+ "<|5.78|>": 50653,
1293
+ "<|5.80|>": 50654,
1294
+ "<|5.82|>": 50655,
1295
+ "<|5.84|>": 50656,
1296
+ "<|5.86|>": 50657,
1297
+ "<|5.88|>": 50658,
1298
+ "<|5.90|>": 50659,
1299
+ "<|5.92|>": 50660,
1300
+ "<|5.94|>": 50661,
1301
+ "<|5.96|>": 50662,
1302
+ "<|5.98|>": 50663,
1303
+ "<|6.00|>": 50664,
1304
+ "<|6.02|>": 50665,
1305
+ "<|6.04|>": 50666,
1306
+ "<|6.06|>": 50667,
1307
+ "<|6.08|>": 50668,
1308
+ "<|6.10|>": 50669,
1309
+ "<|6.12|>": 50670,
1310
+ "<|6.14|>": 50671,
1311
+ "<|6.16|>": 50672,
1312
+ "<|6.18|>": 50673,
1313
+ "<|6.20|>": 50674,
1314
+ "<|6.22|>": 50675,
1315
+ "<|6.24|>": 50676,
1316
+ "<|6.26|>": 50677,
1317
+ "<|6.28|>": 50678,
1318
+ "<|6.30|>": 50679,
1319
+ "<|6.32|>": 50680,
1320
+ "<|6.34|>": 50681,
1321
+ "<|6.36|>": 50682,
1322
+ "<|6.38|>": 50683,
1323
+ "<|6.40|>": 50684,
1324
+ "<|6.42|>": 50685,
1325
+ "<|6.44|>": 50686,
1326
+ "<|6.46|>": 50687,
1327
+ "<|6.48|>": 50688,
1328
+ "<|6.50|>": 50689,
1329
+ "<|6.52|>": 50690,
1330
+ "<|6.54|>": 50691,
1331
+ "<|6.56|>": 50692,
1332
+ "<|6.58|>": 50693,
1333
+ "<|6.60|>": 50694,
1334
+ "<|6.62|>": 50695,
1335
+ "<|6.64|>": 50696,
1336
+ "<|6.66|>": 50697,
1337
+ "<|6.68|>": 50698,
1338
+ "<|6.70|>": 50699,
1339
+ "<|6.72|>": 50700,
1340
+ "<|6.74|>": 50701,
1341
+ "<|6.76|>": 50702,
1342
+ "<|6.78|>": 50703,
1343
+ "<|6.80|>": 50704,
1344
+ "<|6.82|>": 50705,
1345
+ "<|6.84|>": 50706,
1346
+ "<|6.86|>": 50707,
1347
+ "<|6.88|>": 50708,
1348
+ "<|6.90|>": 50709,
1349
+ "<|6.92|>": 50710,
1350
+ "<|6.94|>": 50711,
1351
+ "<|6.96|>": 50712,
1352
+ "<|6.98|>": 50713,
1353
+ "<|7.00|>": 50714,
1354
+ "<|7.02|>": 50715,
1355
+ "<|7.04|>": 50716,
1356
+ "<|7.06|>": 50717,
1357
+ "<|7.08|>": 50718,
1358
+ "<|7.10|>": 50719,
1359
+ "<|7.12|>": 50720,
1360
+ "<|7.14|>": 50721,
1361
+ "<|7.16|>": 50722,
1362
+ "<|7.18|>": 50723,
1363
+ "<|7.20|>": 50724,
1364
+ "<|7.22|>": 50725,
1365
+ "<|7.24|>": 50726,
1366
+ "<|7.26|>": 50727,
1367
+ "<|7.28|>": 50728,
1368
+ "<|7.30|>": 50729,
1369
+ "<|7.32|>": 50730,
1370
+ "<|7.34|>": 50731,
1371
+ "<|7.36|>": 50732,
1372
+ "<|7.38|>": 50733,
1373
+ "<|7.40|>": 50734,
1374
+ "<|7.42|>": 50735,
1375
+ "<|7.44|>": 50736,
1376
+ "<|7.46|>": 50737,
1377
+ "<|7.48|>": 50738,
1378
+ "<|7.50|>": 50739,
1379
+ "<|7.52|>": 50740,
1380
+ "<|7.54|>": 50741,
1381
+ "<|7.56|>": 50742,
1382
+ "<|7.58|>": 50743,
1383
+ "<|7.60|>": 50744,
1384
+ "<|7.62|>": 50745,
1385
+ "<|7.64|>": 50746,
1386
+ "<|7.66|>": 50747,
1387
+ "<|7.68|>": 50748,
1388
+ "<|7.70|>": 50749,
1389
+ "<|7.72|>": 50750,
1390
+ "<|7.74|>": 50751,
1391
+ "<|7.76|>": 50752,
1392
+ "<|7.78|>": 50753,
1393
+ "<|7.80|>": 50754,
1394
+ "<|7.82|>": 50755,
1395
+ "<|7.84|>": 50756,
1396
+ "<|7.86|>": 50757,
1397
+ "<|7.88|>": 50758,
1398
+ "<|7.90|>": 50759,
1399
+ "<|7.92|>": 50760,
1400
+ "<|7.94|>": 50761,
1401
+ "<|7.96|>": 50762,
1402
+ "<|7.98|>": 50763,
1403
+ "<|8.00|>": 50764,
1404
+ "<|8.02|>": 50765,
1405
+ "<|8.04|>": 50766,
1406
+ "<|8.06|>": 50767,
1407
+ "<|8.08|>": 50768,
1408
+ "<|8.10|>": 50769,
1409
+ "<|8.12|>": 50770,
1410
+ "<|8.14|>": 50771,
1411
+ "<|8.16|>": 50772,
1412
+ "<|8.18|>": 50773,
1413
+ "<|8.20|>": 50774,
1414
+ "<|8.22|>": 50775,
1415
+ "<|8.24|>": 50776,
1416
+ "<|8.26|>": 50777,
1417
+ "<|8.28|>": 50778,
1418
+ "<|8.30|>": 50779,
1419
+ "<|8.32|>": 50780,
1420
+ "<|8.34|>": 50781,
1421
+ "<|8.36|>": 50782,
1422
+ "<|8.38|>": 50783,
1423
+ "<|8.40|>": 50784,
1424
+ "<|8.42|>": 50785,
1425
+ "<|8.44|>": 50786,
1426
+ "<|8.46|>": 50787,
1427
+ "<|8.48|>": 50788,
1428
+ "<|8.50|>": 50789,
1429
+ "<|8.52|>": 50790,
1430
+ "<|8.54|>": 50791,
1431
+ "<|8.56|>": 50792,
1432
+ "<|8.58|>": 50793,
1433
+ "<|8.60|>": 50794,
1434
+ "<|8.62|>": 50795,
1435
+ "<|8.64|>": 50796,
1436
+ "<|8.66|>": 50797,
1437
+ "<|8.68|>": 50798,
1438
+ "<|8.70|>": 50799,
1439
+ "<|8.72|>": 50800,
1440
+ "<|8.74|>": 50801,
1441
+ "<|8.76|>": 50802,
1442
+ "<|8.78|>": 50803,
1443
+ "<|8.80|>": 50804,
1444
+ "<|8.82|>": 50805,
1445
+ "<|8.84|>": 50806,
1446
+ "<|8.86|>": 50807,
1447
+ "<|8.88|>": 50808,
1448
+ "<|8.90|>": 50809,
1449
+ "<|8.92|>": 50810,
1450
+ "<|8.94|>": 50811,
1451
+ "<|8.96|>": 50812,
1452
+ "<|8.98|>": 50813,
1453
+ "<|9.00|>": 50814,
1454
+ "<|9.02|>": 50815,
1455
+ "<|9.04|>": 50816,
1456
+ "<|9.06|>": 50817,
1457
+ "<|9.08|>": 50818,
1458
+ "<|9.10|>": 50819,
1459
+ "<|9.12|>": 50820,
1460
+ "<|9.14|>": 50821,
1461
+ "<|9.16|>": 50822,
1462
+ "<|9.18|>": 50823,
1463
+ "<|9.20|>": 50824,
1464
+ "<|9.22|>": 50825,
1465
+ "<|9.24|>": 50826,
1466
+ "<|9.26|>": 50827,
1467
+ "<|9.28|>": 50828,
1468
+ "<|9.30|>": 50829,
1469
+ "<|9.32|>": 50830,
1470
+ "<|9.34|>": 50831,
1471
+ "<|9.36|>": 50832,
1472
+ "<|9.38|>": 50833,
1473
+ "<|9.40|>": 50834,
1474
+ "<|9.42|>": 50835,
1475
+ "<|9.44|>": 50836,
1476
+ "<|9.46|>": 50837,
1477
+ "<|9.48|>": 50838,
1478
+ "<|9.50|>": 50839,
1479
+ "<|9.52|>": 50840,
1480
+ "<|9.54|>": 50841,
1481
+ "<|9.56|>": 50842,
1482
+ "<|9.58|>": 50843,
1483
+ "<|9.60|>": 50844,
1484
+ "<|9.62|>": 50845,
1485
+ "<|9.64|>": 50846,
1486
+ "<|9.66|>": 50847,
1487
+ "<|9.68|>": 50848,
1488
+ "<|9.70|>": 50849,
1489
+ "<|9.72|>": 50850,
1490
+ "<|9.74|>": 50851,
1491
+ "<|9.76|>": 50852,
1492
+ "<|9.78|>": 50853,
1493
+ "<|9.80|>": 50854,
1494
+ "<|9.82|>": 50855,
1495
+ "<|9.84|>": 50856,
1496
+ "<|9.86|>": 50857,
1497
+ "<|9.88|>": 50858,
1498
+ "<|9.90|>": 50859,
1499
+ "<|9.92|>": 50860,
1500
+ "<|9.94|>": 50861,
1501
+ "<|9.96|>": 50862,
1502
+ "<|9.98|>": 50863,
1503
+ "<|af|>": 50327,
1504
+ "<|am|>": 50334,
1505
+ "<|ar|>": 50272,
1506
+ "<|as|>": 50350,
1507
+ "<|az|>": 50304,
1508
+ "<|ba|>": 50355,
1509
+ "<|be|>": 50330,
1510
+ "<|bg|>": 50292,
1511
+ "<|bn|>": 50302,
1512
+ "<|bo|>": 50347,
1513
+ "<|br|>": 50309,
1514
+ "<|bs|>": 50315,
1515
+ "<|ca|>": 50270,
1516
+ "<|cs|>": 50283,
1517
+ "<|cy|>": 50297,
1518
+ "<|da|>": 50285,
1519
+ "<|de|>": 50261,
1520
+ "<|el|>": 50281,
1521
+ "<|en|>": 50259,
1522
+ "<|es|>": 50262,
1523
+ "<|et|>": 50307,
1524
+ "<|eu|>": 50310,
1525
+ "<|fa|>": 50300,
1526
+ "<|fi|>": 50277,
1527
+ "<|fo|>": 50338,
1528
+ "<|fr|>": 50265,
1529
+ "<|gl|>": 50319,
1530
+ "<|gu|>": 50333,
1531
+ "<|haw|>": 50352,
1532
+ "<|ha|>": 50354,
1533
+ "<|he|>": 50279,
1534
+ "<|hi|>": 50276,
1535
+ "<|hr|>": 50291,
1536
+ "<|ht|>": 50339,
1537
+ "<|hu|>": 50286,
1538
+ "<|hy|>": 50312,
1539
+ "<|id|>": 50275,
1540
+ "<|is|>": 50311,
1541
+ "<|it|>": 50274,
1542
+ "<|ja|>": 50266,
1543
+ "<|jw|>": 50356,
1544
+ "<|ka|>": 50329,
1545
+ "<|kk|>": 50316,
1546
+ "<|km|>": 50323,
1547
+ "<|kn|>": 50306,
1548
+ "<|ko|>": 50264,
1549
+ "<|la|>": 50294,
1550
+ "<|lb|>": 50345,
1551
+ "<|ln|>": 50353,
1552
+ "<|lo|>": 50336,
1553
+ "<|lt|>": 50293,
1554
+ "<|lv|>": 50301,
1555
+ "<|mg|>": 50349,
1556
+ "<|mi|>": 50295,
1557
+ "<|mk|>": 50308,
1558
+ "<|ml|>": 50296,
1559
+ "<|mn|>": 50314,
1560
+ "<|mr|>": 50320,
1561
+ "<|ms|>": 50282,
1562
+ "<|mt|>": 50343,
1563
+ "<|my|>": 50346,
1564
+ "<|ne|>": 50313,
1565
+ "<|nl|>": 50271,
1566
+ "<|nn|>": 50342,
1567
+ "<|nocaptions|>": 50362,
1568
+ "<|notimestamps|>": 50363,
1569
+ "<|no|>": 50288,
1570
+ "<|oc|>": 50328,
1571
+ "<|pa|>": 50321,
1572
+ "<|pl|>": 50269,
1573
+ "<|ps|>": 50340,
1574
+ "<|pt|>": 50267,
1575
+ "<|ro|>": 50284,
1576
+ "<|ru|>": 50263,
1577
+ "<|sa|>": 50344,
1578
+ "<|sd|>": 50332,
1579
+ "<|si|>": 50322,
1580
+ "<|sk|>": 50298,
1581
+ "<|sl|>": 50305,
1582
+ "<|sn|>": 50324,
1583
+ "<|so|>": 50326,
1584
+ "<|sq|>": 50317,
1585
+ "<|sr|>": 50303,
1586
+ "<|startoflm|>": 50360,
1587
+ "<|startofprev|>": 50361,
1588
+ "<|startoftranscript|>": 50258,
1589
+ "<|su|>": 50357,
1590
+ "<|sv|>": 50273,
1591
+ "<|sw|>": 50318,
1592
+ "<|ta|>": 50287,
1593
+ "<|te|>": 50299,
1594
+ "<|tg|>": 50331,
1595
+ "<|th|>": 50289,
1596
+ "<|tk|>": 50341,
1597
+ "<|tl|>": 50348,
1598
+ "<|transcribe|>": 50359,
1599
+ "<|translate|>": 50358,
1600
+ "<|tr|>": 50268,
1601
+ "<|tt|>": 50351,
1602
+ "<|uk|>": 50280,
1603
+ "<|ur|>": 50290,
1604
+ "<|uz|>": 50337,
1605
+ "<|vi|>": 50278,
1606
+ "<|yi|>": 50335,
1607
+ "<|yo|>": 50325,
1608
+ "<|zh|>": 50260
1609
+ }
config.json ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openai/whisper-large-v2",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "apply_spec_augment": false,
6
+ "architectures": [
7
+ "WhisperForConditionalGeneration"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "begin_suppress_tokens": [
11
+ 220,
12
+ 50257
13
+ ],
14
+ "bos_token_id": 50257,
15
+ "classifier_proj_size": 256,
16
+ "d_model": 1280,
17
+ "decoder_attention_heads": 20,
18
+ "decoder_ffn_dim": 5120,
19
+ "decoder_layerdrop": 0.0,
20
+ "decoder_layers": 32,
21
+ "decoder_start_token_id": 50258,
22
+ "dropout": 0.0,
23
+ "encoder_attention_heads": 20,
24
+ "encoder_ffn_dim": 5120,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 32,
27
+ "eos_token_id": 50257,
28
+ "forced_decoder_ids": [
29
+ [
30
+ 1,
31
+ 50259
32
+ ],
33
+ [
34
+ 2,
35
+ 50359
36
+ ],
37
+ [
38
+ 3,
39
+ 50363
40
+ ]
41
+ ],
42
+ "init_std": 0.02,
43
+ "is_encoder_decoder": true,
44
+ "mask_feature_length": 10,
45
+ "mask_feature_min_masks": 0,
46
+ "mask_feature_prob": 0.0,
47
+ "mask_time_length": 10,
48
+ "mask_time_min_masks": 2,
49
+ "mask_time_prob": 0.05,
50
+ "max_length": 448,
51
+ "max_source_positions": 1500,
52
+ "max_target_positions": 448,
53
+ "median_filter_width": 7,
54
+ "model_type": "whisper",
55
+ "num_hidden_layers": 32,
56
+ "num_mel_bins": 80,
57
+ "pad_token_id": 50257,
58
+ "scale_embedding": false,
59
+ "suppress_tokens": [
60
+ 1,
61
+ 2,
62
+ 7,
63
+ 8,
64
+ 9,
65
+ 10,
66
+ 14,
67
+ 25,
68
+ 26,
69
+ 27,
70
+ 28,
71
+ 29,
72
+ 31,
73
+ 58,
74
+ 59,
75
+ 60,
76
+ 61,
77
+ 62,
78
+ 63,
79
+ 90,
80
+ 91,
81
+ 92,
82
+ 93,
83
+ 359,
84
+ 503,
85
+ 522,
86
+ 542,
87
+ 873,
88
+ 893,
89
+ 902,
90
+ 918,
91
+ 922,
92
+ 931,
93
+ 1350,
94
+ 1853,
95
+ 1982,
96
+ 2460,
97
+ 2627,
98
+ 3246,
99
+ 3253,
100
+ 3268,
101
+ 3536,
102
+ 3846,
103
+ 3961,
104
+ 4183,
105
+ 4667,
106
+ 6585,
107
+ 6647,
108
+ 7273,
109
+ 9061,
110
+ 9383,
111
+ 10428,
112
+ 10929,
113
+ 11938,
114
+ 12033,
115
+ 12331,
116
+ 12562,
117
+ 13793,
118
+ 14157,
119
+ 14635,
120
+ 15265,
121
+ 15618,
122
+ 16553,
123
+ 16604,
124
+ 18362,
125
+ 18956,
126
+ 20075,
127
+ 21675,
128
+ 22520,
129
+ 26130,
130
+ 26161,
131
+ 26435,
132
+ 28279,
133
+ 29464,
134
+ 31650,
135
+ 32302,
136
+ 32470,
137
+ 36865,
138
+ 42863,
139
+ 47425,
140
+ 49870,
141
+ 50254,
142
+ 50258,
143
+ 50358,
144
+ 50359,
145
+ 50360,
146
+ 50361,
147
+ 50362
148
+ ],
149
+ "torch_dtype": "float32",
150
+ "transformers_version": "4.34.0.dev0",
151
+ "use_cache": true,
152
+ "use_weighted_layer_sum": false,
153
+ "vocab_size": 51865
154
+ }
distil_whisper/__init__.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ __version__ = "0.0.1"
17
+
18
+ from .modeling_flax_whisper import FlaxWhisperForConditionalGeneration
19
+ from .partitioner import PjitPartitioner
20
+ from .pipeline import FlaxWhisperPipeline
21
+ from .train_state import InferenceState
distil_whisper/__pycache__/__init__.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af9ae4a8a1ff7fb46887a99add169dda2308b6f168ae7176a9a9b934b7d6ecc5
3
+ size 414
distil_whisper/__pycache__/layers.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bd814358d750f7e74a787df4c376919c74beae05b93e900549940669fde1da4
3
+ size 41875
distil_whisper/__pycache__/modeling_flax_whisper.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6442b8035c452676ffda775161984de1aa5a6a279403bdd258e100567f796d49
3
+ size 54030
distil_whisper/__pycache__/partitioner.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e1027212ff84b04b61fe4a3a5fa194e076374a58ab2fb96a38c8328319b21a3
3
+ size 33252
distil_whisper/__pycache__/pipeline.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b034728c1456114b4f1f484421a9d960df0533d30bbd315e7951aa32401c87bf
3
+ size 16762
distil_whisper/__pycache__/train_state.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:178817b09c84d935eadab40cace6d0fb677871eac5f0dd403e907e555bf8a12e
3
+ size 4106
distil_whisper/layers.py ADDED
@@ -0,0 +1,1338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The T5X Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Dense attention classes and mask/weighting functions."""
16
+
17
+ # pylint: disable=attribute-defined-outside-init,g-bare-generic
18
+
19
+ import dataclasses
20
+ import functools
21
+ import operator
22
+ from typing import Any, Callable, Iterable, List, Optional, Sequence, Tuple, Union
23
+
24
+ import jax
25
+ import jax.numpy as jnp
26
+ import numpy as np
27
+ from flax import linen as nn
28
+ from flax.linen import partitioning as nn_partitioning
29
+ from flax.linen.dtypes import promote_dtype
30
+ from jax import lax, random
31
+
32
+
33
+ # from flax.linen.partitioning import param_with_axes, with_sharding_constraint
34
+ param_with_axes = nn_partitioning.param_with_axes
35
+ with_sharding_constraint = nn_partitioning.with_sharding_constraint
36
+
37
+
38
+ # Type annotations
39
+ Array = jnp.ndarray
40
+ DType = jnp.dtype
41
+ PRNGKey = jnp.ndarray
42
+ Shape = Iterable[int]
43
+ Activation = Callable[..., Array]
44
+ PrecisionLike = Union[None, str, lax.Precision, Tuple[str, str], Tuple[lax.Precision, lax.Precision]]
45
+ DotGeneralT = Callable[..., Array]
46
+ ConvGeneralDilatedT = Callable[..., Array]
47
+ PaddingLike = Union[str, int, Sequence[Union[int, Tuple[int, int]]]]
48
+ LaxPadding = Union[str, Sequence[Tuple[int, int]]]
49
+
50
+ # Parameter initializers.
51
+ Initializer = Callable[[PRNGKey, Shape, DType], Array]
52
+ InitializerAxis = Union[int, Tuple[int, ...]]
53
+ NdInitializer = Callable[[PRNGKey, Shape, DType, InitializerAxis, InitializerAxis], Array]
54
+
55
+ default_embed_init = nn.initializers.variance_scaling(1.0, "fan_in", "normal", out_axis=0)
56
+
57
+
58
+ # ------------------------------------------------------------------------------
59
+ # Temporary inlined JAX N-d initializer code
60
+ # TODO(levskaya): remove once new JAX release is out.
61
+ # ------------------------------------------------------------------------------
62
+ def _compute_fans(shape: jax.core.NamedShape, in_axis=-2, out_axis=-1):
63
+ """Inlined JAX `nn.initializer._compute_fans`."""
64
+ if isinstance(in_axis, int):
65
+ in_size = shape[in_axis]
66
+ else:
67
+ in_size = int(np.prod([shape[i] for i in in_axis]))
68
+ if isinstance(out_axis, int):
69
+ out_size = shape[out_axis]
70
+ else:
71
+ out_size = int(np.prod([shape[i] for i in out_axis]))
72
+ receptive_field_size = shape.total / in_size / out_size
73
+ fan_in = in_size * receptive_field_size
74
+ fan_out = out_size * receptive_field_size
75
+ return fan_in, fan_out
76
+
77
+
78
+ def variance_scaling(scale, mode, distribution, in_axis=-2, out_axis=-1, dtype=jnp.float_):
79
+ """Inlined JAX `nn.initializer.variance_scaling`."""
80
+
81
+ def init(key, shape, dtype=dtype):
82
+ return jnp.zeros(shape, dtype=dtype)
83
+ dtype = jax.dtypes.canonicalize_dtype(dtype)
84
+ shape = jax.core.as_named_shape(shape)
85
+ fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
86
+ if mode == "fan_in":
87
+ denominator = fan_in
88
+ elif mode == "fan_out":
89
+ denominator = fan_out
90
+ elif mode == "fan_avg":
91
+ denominator = (fan_in + fan_out) / 2
92
+ else:
93
+ raise ValueError("invalid mode for variance scaling initializer: {}".format(mode))
94
+ variance = jnp.array(scale / denominator, dtype=dtype)
95
+
96
+ if distribution == "truncated_normal":
97
+ # constant is stddev of standard normal truncated to (-2, 2)
98
+ stddev = jnp.sqrt(variance) / jnp.array(0.87962566103423978, dtype)
99
+ return random.truncated_normal(key, -2, 2, shape, dtype) * stddev
100
+ elif distribution == "normal":
101
+ return random.normal(key, shape, dtype) * jnp.sqrt(variance)
102
+ elif distribution == "uniform":
103
+ return random.uniform(key, shape, dtype, -1) * jnp.sqrt(3 * variance)
104
+ else:
105
+ raise ValueError("invalid distribution for variance scaling initializer: {}".format(distribution))
106
+
107
+ return init
108
+
109
+
110
+ # ------------------------------------------------------------------------------
111
+
112
+
113
+ def nd_dense_init(scale, mode, distribution):
114
+ """Initializer with in_axis, out_axis set at call time."""
115
+
116
+ def init_fn(key, shape, dtype, in_axis, out_axis):
117
+ fn = variance_scaling(scale, mode, distribution, in_axis, out_axis)
118
+ return fn(key, shape, dtype)
119
+
120
+ return init_fn
121
+
122
+
123
+ def dot_product_attention(
124
+ query: Array,
125
+ key: Array,
126
+ value: Array,
127
+ bias: Optional[Array] = None,
128
+ dropout_rng: Optional[PRNGKey] = None,
129
+ dropout_rate: float = 0.0,
130
+ deterministic: bool = False,
131
+ dtype: DType = jnp.float32,
132
+ float32_logits: bool = False,
133
+ ):
134
+ """Computes dot-product attention given query, key, and value.
135
+
136
+ This is the core function for applying attention based on
137
+ https://arxiv.org/abs/1706.03762. It calculates the attention weights given
138
+ query and key and combines the values using the attention weights.
139
+
140
+ Args:
141
+ query: queries for calculating attention with shape of `[batch, q_length,
142
+ num_heads, qk_depth_per_head]`.
143
+ key: keys for calculating attention with shape of `[batch, kv_length,
144
+ num_heads, qk_depth_per_head]`.
145
+ value: values to be used in attention with shape of `[batch, kv_length,
146
+ num_heads, v_depth_per_head]`.
147
+ bias: bias for the attention weights. This should be broadcastable to the
148
+ shape `[batch, num_heads, q_length, kv_length]` This can be used for
149
+ incorporating causal masks, padding masks, proximity bias, etc.
150
+ dropout_rng: JAX PRNGKey: to be used for dropout
151
+ dropout_rate: dropout rate
152
+ deterministic: bool, deterministic or not (to apply dropout)
153
+ dtype: the dtype of the computation (default: float32)
154
+ float32_logits: bool, if True then compute logits in float32 to avoid
155
+ numerical issues with bfloat16.
156
+
157
+ Returns:
158
+ Output of shape `[batch, length, num_heads, v_depth_per_head]`.
159
+ """
160
+ assert key.ndim == query.ndim == value.ndim, "q, k, v must have same rank."
161
+ assert query.shape[:-3] == key.shape[:-3] == value.shape[:-3], "q, k, v batch dims must match."
162
+ assert query.shape[-2] == key.shape[-2] == value.shape[-2], "q, k, v num_heads must match."
163
+ assert key.shape[-3] == value.shape[-3], "k, v lengths must match."
164
+ assert query.shape[-1] == key.shape[-1], "q, k depths must match."
165
+
166
+ # Casting logits and softmax computation for float32 for model stability.
167
+ if float32_logits:
168
+ query = query.astype(jnp.float32)
169
+ key = key.astype(jnp.float32)
170
+
171
+ # `attn_weights`: [batch, num_heads, q_length, kv_length]
172
+ attn_weights = jnp.einsum("bqhd,bkhd->bhqk", query, key)
173
+
174
+ # Apply attention bias: masking, dropout, proximity bias, etc.
175
+ if bias is not None:
176
+ attn_weights = attn_weights + bias.astype(attn_weights.dtype)
177
+
178
+ # Normalize the attention weights across `kv_length` dimension.
179
+ attn_weights = jax.nn.softmax(attn_weights).astype(dtype)
180
+
181
+ # Apply attention dropout.
182
+ if not deterministic and dropout_rate > 0.0:
183
+ keep_prob = 1.0 - dropout_rate
184
+ # T5 broadcasts along the "length" dim, but unclear which one that
185
+ # corresponds to in positional dimensions here, assuming query dim.
186
+ dropout_shape = list(attn_weights.shape)
187
+ dropout_shape[-2] = 1
188
+ keep = random.bernoulli(dropout_rng, keep_prob, dropout_shape)
189
+ keep = jnp.broadcast_to(keep, attn_weights.shape)
190
+ multiplier = keep.astype(attn_weights.dtype) / jnp.asarray(keep_prob, dtype=dtype)
191
+ attn_weights = attn_weights * multiplier
192
+
193
+ # Take the linear combination of `value`.
194
+ return jnp.einsum("bhqk,bkhd->bqhd", attn_weights, value)
195
+
196
+
197
+ dynamic_vector_slice_in_dim = jax.vmap(lax.dynamic_slice_in_dim, in_axes=(None, 0, None, None))
198
+
199
+
200
+ class MultiHeadDotProductAttention(nn.Module):
201
+ """Multi-head dot-product attention.
202
+
203
+ Attributes:
204
+ num_heads: number of attention heads. Features (i.e. inputs_q.shape[-1])
205
+ should be divisible by the number of heads.
206
+ head_dim: dimension of each head.
207
+ dtype: the dtype of the computation.
208
+ dropout_rate: dropout rate
209
+ kernel_init: initializer for the kernel of the Dense layers.
210
+ float32_logits: bool, if True then compute logits in float32 to avoid
211
+ numerical issues with bfloat16.
212
+ """
213
+
214
+ num_heads: int
215
+ head_dim: int
216
+ dtype: DType = jnp.float32
217
+ dropout_rate: float = 0.0
218
+ kernel_init: NdInitializer = nd_dense_init(1.0, "fan_in", "normal")
219
+ float32_logits: bool = False # computes logits in float32 for stability.
220
+
221
+ @nn.compact
222
+ def __call__(
223
+ self,
224
+ inputs_q: Array,
225
+ inputs_kv: Array,
226
+ mask: Optional[Array] = None,
227
+ bias: Optional[Array] = None,
228
+ *,
229
+ decode: bool = False,
230
+ deterministic: bool = False,
231
+ ) -> Array:
232
+ """Applies multi-head dot product attention on the input data.
233
+
234
+ Projects the inputs into multi-headed query, key, and value vectors,
235
+ applies dot-product attention and project the results to an output vector.
236
+
237
+ There are two modes: decoding and non-decoding (e.g., training). The mode is
238
+ determined by `decode` argument. For decoding, this method is called twice,
239
+ first to initialize the cache and then for an actual decoding process. The
240
+ two calls are differentiated by the presence of 'cached_key' in the variable
241
+ dict. In the cache initialization stage, the cache variables are initialized
242
+ as zeros and will be filled in the subsequent decoding process.
243
+
244
+ In the cache initialization call, `inputs_q` has a shape [batch, length,
245
+ q_features] and `inputs_kv`: [batch, length, kv_features]. During the
246
+ incremental decoding stage, query, key and value all have the shape [batch,
247
+ 1, qkv_features] corresponding to a single step.
248
+
249
+ Args:
250
+ inputs_q: input queries of shape `[batch, q_length, q_features]`.
251
+ inputs_kv: key/values of shape `[batch, kv_length, kv_features]`.
252
+ mask: attention mask of shape `[batch, num_heads, q_length, kv_length]`.
253
+ bias: attention bias of shape `[batch, num_heads, q_length, kv_length]`.
254
+ decode: Whether to prepare and use an autoregressive cache.
255
+ deterministic: Disables dropout if set to True.
256
+
257
+ Returns:
258
+ output of shape `[batch, length, q_features]`.
259
+ """
260
+ projection = functools.partial(
261
+ DenseGeneral,
262
+ axis=-1,
263
+ features=(self.num_heads, self.head_dim),
264
+ kernel_axes=("embed", "heads", "kv"),
265
+ dtype=self.dtype,
266
+ )
267
+
268
+ # NOTE: T5 does not explicitly rescale the attention logits by
269
+ # 1/sqrt(depth_kq)! This is folded into the initializers of the
270
+ # linear transformations, which is equivalent under Adafactor.
271
+ depth_scaling = jnp.sqrt(self.head_dim).astype(self.dtype)
272
+
273
+ def query_init(*args):
274
+ return self.kernel_init(*args) / depth_scaling
275
+
276
+ # Project inputs_q to multi-headed q/k/v
277
+ # dimensions are then [batch, length, num_heads, head_dim]
278
+ query = projection(kernel_init=query_init, name="query")(inputs_q)
279
+ key = projection(kernel_init=self.kernel_init, name="key")(inputs_kv)
280
+ value = projection(kernel_init=self.kernel_init, name="value")(inputs_kv)
281
+
282
+ query = with_sharding_constraint(query, ("batch", "length", "heads", "kv"))
283
+ key = with_sharding_constraint(key, ("batch", "length", "heads", "kv"))
284
+ value = with_sharding_constraint(value, ("batch", "length", "heads", "kv"))
285
+
286
+ if decode:
287
+ # Detect if we're initializing by absence of existing cache data.
288
+ is_initialized = self.has_variable("cache", "cached_key")
289
+
290
+ # The key and value have dimension [batch, length, num_heads, head_dim],
291
+ # but we cache them as [batch, num_heads, head_dim, length] as a TPU
292
+ # fusion optimization. This also enables the "scatter via one-hot
293
+ # broadcast" trick, which means we do a one-hot broadcast instead of a
294
+ # scatter/gather operations, resulting in a 3-4x speedup in practice.
295
+ def swap_dims(x):
296
+ return x[:-3] + tuple(x[i] for i in [-2, -1, -3])
297
+
298
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, swap_dims(key.shape), key.dtype)
299
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, swap_dims(value.shape), value.dtype)
300
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
301
+ if is_initialized:
302
+ batch, num_heads, head_dim, length = cached_key.value.shape
303
+ # During fast autoregressive decoding, we feed one position at a time,
304
+ # and cache the keys and values step by step.
305
+ # Sanity shape check of cached key against input query.
306
+ expected_shape = (batch, 1, num_heads, head_dim)
307
+ if expected_shape != query.shape:
308
+ raise ValueError(
309
+ "Autoregressive cache shape error, "
310
+ "expected query shape %s instead got %s." % (expected_shape, query.shape)
311
+ )
312
+
313
+ # Create a OHE of the current index. NOTE: the index is increased below.
314
+ cur_index = cache_index.value
315
+ one_hot_indices = jax.nn.one_hot(cur_index, length, dtype=key.dtype)
316
+ # In order to update the key, value caches with the current key and
317
+ # value, we move the length axis to the back, similar to what we did for
318
+ # the cached ones above.
319
+ # Note these are currently the key and value of a single position, since
320
+ # we feed one position at a time.
321
+ one_token_key = jnp.moveaxis(key, -3, -1)
322
+ one_token_value = jnp.moveaxis(value, -3, -1)
323
+ # Update key, value caches with our new 1d spatial slices.
324
+ # We implement an efficient scatter into the cache via one-hot
325
+ # broadcast and addition.
326
+ key = cached_key.value + one_token_key * one_hot_indices
327
+ value = cached_value.value + one_token_value * one_hot_indices
328
+ cached_key.value = key
329
+ cached_value.value = value
330
+ cache_index.value = cache_index.value + 1
331
+ # Move the keys and values back to their original shapes.
332
+ key = jnp.moveaxis(key, -1, -3)
333
+ value = jnp.moveaxis(value, -1, -3)
334
+
335
+ # Causal mask for cached decoder self-attention: our single query
336
+ # position should only attend to those key positions that have already
337
+ # been generated and cached, not the remaining zero elements.
338
+ mask = combine_masks(
339
+ mask,
340
+ jnp.broadcast_to(
341
+ jnp.arange(length) <= cur_index,
342
+ # (1, 1, length) represent (head dim, query length, key length)
343
+ # query length is 1 because during decoding we deal with one
344
+ # index.
345
+ # The same mask is applied to all batch elements and heads.
346
+ (batch, 1, 1, length),
347
+ ),
348
+ )
349
+
350
+ # Grab the correct relative attention bias during decoding. This is
351
+ # only required during single step decoding.
352
+ if bias is not None:
353
+ # The bias is a full attention matrix, but during decoding we only
354
+ # have to take a slice of it.
355
+ # This is equivalent to bias[..., cur_index:cur_index+1, :].
356
+ bias = dynamic_vector_slice_in_dim(jnp.squeeze(bias, axis=0), jnp.reshape(cur_index, (-1)), 1, -2)
357
+
358
+ # Convert the boolean attention mask to an attention bias.
359
+ if mask is not None:
360
+ # attention mask in the form of attention bias
361
+ attention_bias = lax.select(
362
+ mask > 0,
363
+ jnp.full(mask.shape, 0.0).astype(self.dtype),
364
+ jnp.full(mask.shape, -1e10).astype(self.dtype),
365
+ )
366
+ else:
367
+ attention_bias = None
368
+
369
+ # Add provided bias term (e.g. relative position embedding).
370
+ if bias is not None:
371
+ attention_bias = combine_biases(attention_bias, bias)
372
+
373
+ dropout_rng = None
374
+ if not deterministic and self.dropout_rate > 0.0:
375
+ dropout_rng = self.make_rng("dropout")
376
+
377
+ # Apply attention.
378
+ x = dot_product_attention(
379
+ query,
380
+ key,
381
+ value,
382
+ bias=attention_bias,
383
+ dropout_rng=dropout_rng,
384
+ dropout_rate=self.dropout_rate,
385
+ deterministic=deterministic,
386
+ dtype=self.dtype,
387
+ float32_logits=self.float32_logits,
388
+ )
389
+
390
+ # Back to the original inputs dimensions.
391
+ out = DenseGeneral(
392
+ features=inputs_q.shape[-1], # output dim is set to the input dim.
393
+ axis=(-2, -1),
394
+ kernel_init=self.kernel_init,
395
+ kernel_axes=("heads", "kv", "embed"),
396
+ dtype=self.dtype,
397
+ name="out",
398
+ )(x)
399
+ return out
400
+
401
+
402
+ def _normalize_axes(axes: Iterable[int], ndim: int) -> Tuple[int]:
403
+ # A tuple by convention. len(axes_tuple) then also gives the rank efficiently.
404
+ return tuple([ax if ax >= 0 else ndim + ax for ax in axes])
405
+
406
+
407
+ def _canonicalize_tuple(x):
408
+ if isinstance(x, Iterable):
409
+ return tuple(x)
410
+ else:
411
+ return (x,)
412
+
413
+
414
+ # ------------------------------------------------------------------------------
415
+ # DenseGeneral for attention layers.
416
+ # ------------------------------------------------------------------------------
417
+ class DenseGeneral(nn.Module):
418
+ """A linear transformation (without bias) with flexible axes.
419
+
420
+ Attributes:
421
+ features: tuple with numbers of output features.
422
+ axis: tuple with axes to apply the transformation on.
423
+ dtype: the dtype of the computation (default: float32).
424
+ kernel_init: initializer function for the weight matrix.
425
+ """
426
+
427
+ features: Union[Iterable[int], int]
428
+ axis: Union[Iterable[int], int] = -1
429
+ dtype: DType = jnp.float32
430
+ params_dtype: DType = jnp.float32
431
+ kernel_init: NdInitializer = nd_dense_init(1.0, "fan_in", "normal")
432
+ kernel_axes: Tuple[str, ...] = ()
433
+ use_bias: bool = True
434
+ bias_init: Any = nn.initializers.zeros
435
+
436
+ @nn.compact
437
+ def __call__(self, inputs: Array) -> Array:
438
+ """Applies a linear transformation to the inputs along multiple dimensions.
439
+
440
+ Args:
441
+ inputs: The nd-array to be transformed.
442
+
443
+ Returns:
444
+ The transformed input.
445
+ """
446
+ features = _canonicalize_tuple(self.features)
447
+ axis = _canonicalize_tuple(self.axis)
448
+
449
+ inputs = jnp.asarray(inputs, self.dtype)
450
+ axis = _normalize_axes(axis, inputs.ndim)
451
+
452
+ kernel_shape = tuple([inputs.shape[ax] for ax in axis]) + features
453
+ kernel_in_axis = np.arange(len(axis))
454
+ kernel_out_axis = np.arange(len(axis), len(axis) + len(features))
455
+ kernel = param_with_axes(
456
+ "kernel",
457
+ self.kernel_init,
458
+ kernel_shape,
459
+ self.params_dtype,
460
+ kernel_in_axis,
461
+ kernel_out_axis,
462
+ axes=self.kernel_axes,
463
+ )
464
+ if self.use_bias:
465
+ bias = param_with_axes(
466
+ "bias",
467
+ self.bias_init,
468
+ features,
469
+ self.params_dtype,
470
+ axes=(self.kernel_axes[-1],),
471
+ )
472
+ kernel = jnp.asarray(kernel, self.dtype)
473
+
474
+ contract_ind = tuple(range(0, len(axis)))
475
+ y = lax.dot_general(inputs, kernel, ((axis, contract_ind), ((), ())))
476
+ if self.use_bias:
477
+ bias = jnp.asarray(bias, self.dtype)
478
+ # y += jnp.reshape(bias, (1,) * (y.ndim - 1) + (-1,))
479
+ y += jnp.reshape(bias, (1,) * (len(features) - y.ndim) + bias.shape[:])
480
+ return y
481
+
482
+
483
+ def _convert_to_activation_function(fn_or_string: Union[str, Callable]) -> Callable:
484
+ """Convert a string to an activation function."""
485
+ if fn_or_string == "linear":
486
+ return lambda x: x
487
+ elif isinstance(fn_or_string, str):
488
+ return getattr(nn, fn_or_string)
489
+ elif callable(fn_or_string):
490
+ return fn_or_string
491
+ else:
492
+ raise ValueError("don't know how to convert %s to an activation function" % (fn_or_string,))
493
+
494
+
495
+ class MlpBlock(nn.Module):
496
+ """Transformer MLP / feed-forward block.
497
+
498
+ Attributes:
499
+ intermediate_dim: Shared dimension of hidden layers.
500
+ activations: Type of activations for each layer. Each element is either
501
+ 'linear', a string function name in flax.linen, or a function.
502
+ kernel_init: Kernel function, passed to the dense layers.
503
+ deterministic: Whether the dropout layers should be deterministic.
504
+ intermediate_dropout_rate: Dropout rate used after the intermediate layers.
505
+ dtype: Type for the dense layer.
506
+ """
507
+
508
+ intermediate_dim: int = 2048
509
+ activations: Sequence[Union[str, Callable]] = ("relu",)
510
+ kernel_init: NdInitializer = nd_dense_init(1.0, "fan_in", "truncated_normal")
511
+ intermediate_dropout_rate: float = 0.1
512
+ dtype: Any = jnp.float32
513
+
514
+ @nn.compact
515
+ def __call__(self, inputs, decode: bool = False, deterministic: bool = False):
516
+ """Applies Transformer MlpBlock module."""
517
+ # Iterate over specified MLP input activation functions.
518
+ # e.g. ('relu',) or ('gelu', 'linear') for gated-gelu.
519
+ activations = []
520
+ for idx, act_fn in enumerate(self.activations):
521
+ dense_name = "wi" if len(self.activations) == 1 else f"wi_{idx}"
522
+ x = DenseGeneral(
523
+ self.intermediate_dim,
524
+ dtype=self.dtype,
525
+ kernel_init=self.kernel_init,
526
+ kernel_axes=("embed", "mlp"),
527
+ name=dense_name,
528
+ )(inputs)
529
+ x = _convert_to_activation_function(act_fn)(x)
530
+ activations.append(x)
531
+
532
+ # Take elementwise product of above intermediate activations.
533
+ x = functools.reduce(operator.mul, activations)
534
+ # Apply dropout and final dense output projection.
535
+ x = nn.Dropout(rate=self.intermediate_dropout_rate, broadcast_dims=(-2,))(
536
+ x, deterministic=deterministic
537
+ ) # Broadcast along length.
538
+ x = with_sharding_constraint(x, ("batch", "length", "mlp"))
539
+ output = DenseGeneral(
540
+ inputs.shape[-1],
541
+ dtype=self.dtype,
542
+ kernel_init=self.kernel_init,
543
+ kernel_axes=("mlp", "embed"),
544
+ name="wo",
545
+ )(x)
546
+ return output
547
+
548
+
549
+ class Embed(nn.Module):
550
+ """A parameterized function from integers [0, n) to d-dimensional vectors.
551
+
552
+ Attributes:
553
+ num_embeddings: number of embeddings.
554
+ features: number of feature dimensions for each embedding.
555
+ dtype: the dtype of the embedding vectors (default: float32).
556
+ embedding_init: embedding initializer.
557
+ one_hot: performs the gather with a one-hot contraction rather than a true
558
+ gather. This is currently needed for SPMD partitioning.
559
+ """
560
+
561
+ num_embeddings: int
562
+ features: int
563
+ cast_input_dtype: Optional[DType] = None
564
+ dtype: DType = jnp.float32
565
+ params_dtype: DType = jnp.float32
566
+ attend_dtype: Optional[DType] = None
567
+ embedding_init: Initializer = default_embed_init
568
+ one_hot: bool = True
569
+ embedding: Array = dataclasses.field(init=False)
570
+
571
+ def setup(self):
572
+ self.embedding = param_with_axes(
573
+ "embedding",
574
+ self.embedding_init,
575
+ (self.num_embeddings, self.features),
576
+ self.params_dtype,
577
+ axes=("vocab", "embed"),
578
+ )
579
+
580
+ def __call__(self, inputs: Array) -> Array:
581
+ """Embeds the inputs along the last dimension.
582
+
583
+ Args:
584
+ inputs: input data, all dimensions are considered batch dimensions.
585
+
586
+ Returns:
587
+ Output which is embedded input data. The output shape follows the input,
588
+ with an additional `features` dimension appended.
589
+ """
590
+ if self.cast_input_dtype:
591
+ inputs = inputs.astype(self.cast_input_dtype)
592
+ if not jnp.issubdtype(inputs.dtype, jnp.integer):
593
+ raise ValueError("Input type must be an integer or unsigned integer.")
594
+ if self.one_hot:
595
+ iota = lax.iota(jnp.int32, self.num_embeddings)
596
+ one_hot = jnp.array(inputs[..., jnp.newaxis] == iota, dtype=self.dtype)
597
+ output = jnp.dot(one_hot, jnp.asarray(self.embedding, self.dtype))
598
+ else:
599
+ output = jnp.asarray(self.embedding, self.dtype)[inputs]
600
+ output = with_sharding_constraint(output, ("batch", "length", "embed"))
601
+ return output
602
+
603
+ def attend(self, query: Array) -> Array:
604
+ """Attend over the embedding using a query array.
605
+
606
+ Args:
607
+ query: array with last dimension equal the feature depth `features` of the
608
+ embedding.
609
+
610
+ Returns:
611
+ An array with final dim `num_embeddings` corresponding to the batched
612
+ inner-product of the array of query vectors against each embedding.
613
+ Commonly used for weight-sharing between embeddings and logit transform
614
+ in NLP models.
615
+ """
616
+ dtype = self.attend_dtype if self.attend_dtype is not None else self.dtype
617
+ return jnp.dot(query, jnp.asarray(self.embedding, dtype).T)
618
+
619
+
620
+ class RelativePositionBiases(nn.Module):
621
+ """Adds T5-style relative positional embeddings to the attention logits.
622
+
623
+ Attributes:
624
+ num_buckets: Number of buckets to bucket distances between key and query
625
+ positions into.
626
+ max_distance: Maximum distance before everything is lumped into the last
627
+ distance bucket.
628
+ num_heads: Number of heads in the attention layer. Each head will get a
629
+ different relative position weighting.
630
+ dtype: Type of arrays through this module.
631
+ embedding_init: initializer for relative embedding table.
632
+ """
633
+
634
+ num_buckets: int
635
+ max_distance: int
636
+ num_heads: int
637
+ dtype: Any
638
+ embedding_init: Callable[..., Array] = nn.linear.default_embed_init
639
+
640
+ @staticmethod
641
+ def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
642
+ """Translate relative position to a bucket number for relative attention.
643
+
644
+ The relative position is defined as memory_position - query_position, i.e.
645
+ the distance in tokens from the attending position to the attended-to
646
+ position. If bidirectional=False, then positive relative positions are
647
+ invalid.
648
+ We use smaller buckets for small absolute relative_position and larger
649
+ buckets for larger absolute relative_positions. All relative
650
+ positions >=max_distance map to the same bucket. All relative
651
+ positions <=-max_distance map to the same bucket. This should allow for
652
+ more graceful generalization to longer sequences than the model has been
653
+ trained on.
654
+
655
+ Args:
656
+ relative_position: an int32 array
657
+ bidirectional: a boolean - whether the attention is bidirectional
658
+ num_buckets: an integer
659
+ max_distance: an integer
660
+
661
+ Returns:
662
+ a Tensor with the same shape as relative_position, containing int32
663
+ values in the range [0, num_buckets)
664
+ """
665
+ ret = 0
666
+ n = -relative_position
667
+ if bidirectional:
668
+ num_buckets //= 2
669
+ ret += (n < 0).astype(np.int32) * num_buckets
670
+ n = np.abs(n)
671
+ else:
672
+ n = np.maximum(n, 0)
673
+ # now n is in the range [0, inf)
674
+ max_exact = num_buckets // 2
675
+ is_small = n < max_exact
676
+ val_if_large = max_exact + (
677
+ np.log(n.astype(np.float32) / max_exact + np.finfo(np.float32).eps)
678
+ / np.log(max_distance / max_exact)
679
+ * (num_buckets - max_exact)
680
+ ).astype(np.int32)
681
+ val_if_large = np.minimum(val_if_large, num_buckets - 1)
682
+ ret += np.where(is_small, n, val_if_large)
683
+ return ret
684
+
685
+ @nn.compact
686
+ def __call__(self, qlen, klen, bidirectional=True):
687
+ """Produce relative position embedding attention biases.
688
+
689
+ Args:
690
+ qlen: attention query length.
691
+ klen: attention key length.
692
+ bidirectional: whether to allow positive memory-query relative position
693
+ embeddings.
694
+
695
+ Returns:
696
+ output: `(1, len, q_len, k_len)` attention bias
697
+ """
698
+ # TODO(levskaya): should we be computing this w. numpy as a program
699
+ # constant?
700
+ context_position = np.arange(qlen, dtype=jnp.int32)[:, None]
701
+ memory_position = np.arange(klen, dtype=jnp.int32)[None, :]
702
+ relative_position = memory_position - context_position # shape (qlen, klen)
703
+ rp_bucket = self._relative_position_bucket(
704
+ relative_position,
705
+ bidirectional=bidirectional,
706
+ num_buckets=self.num_buckets,
707
+ max_distance=self.max_distance,
708
+ )
709
+ relative_attention_bias = param_with_axes(
710
+ "rel_embedding",
711
+ self.embedding_init,
712
+ (self.num_heads, self.num_buckets),
713
+ jnp.float32,
714
+ axes=("heads", "relpos_buckets"),
715
+ )
716
+
717
+ relative_attention_bias = jnp.asarray(relative_attention_bias, self.dtype)
718
+ # Instead of using a slow gather, we create a leading-dimension one-hot
719
+ # array from rp_bucket and use it to perform the gather-equivalent via a
720
+ # contraction, i.e.:
721
+ # (num_head, num_buckets) x (num_buckets one-hot, qlen, klen).
722
+ # This is equivalent to relative_attention_bias[:, rp_bucket]
723
+ bcast_iota = lax.broadcasted_iota(jnp.int32, (self.num_buckets, 1, 1), 0)
724
+ rp_bucket_one_hot = jnp.array(rp_bucket[jnp.newaxis, ...] == bcast_iota, dtype=self.dtype)
725
+ # --> shape (qlen, klen, num_heads)
726
+ values = lax.dot_general(
727
+ relative_attention_bias,
728
+ rp_bucket_one_hot,
729
+ (((1,), (0,)), ((), ())), # rhs, lhs contracting dims
730
+ ) # no batched dims
731
+ # Add a singleton batch dimension.
732
+ # --> shape (1, num_heads, qlen, klen)
733
+ return values[jnp.newaxis, ...]
734
+
735
+
736
+ # ------------------------------------------------------------------------------
737
+ # T5 Layernorm - no subtraction of mean or bias.
738
+ # ------------------------------------------------------------------------------
739
+ # class LayerNorm(nn.Module):
740
+ # """T5 Layer normalization operating on the last axis of the input data."""
741
+ # epsilon: float = 1e-6
742
+ # dtype: Any = jnp.float32
743
+ # scale_init: Initializer = nn.initializers.ones
744
+
745
+ # @nn.compact
746
+ # def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
747
+ # """Applies layer normalization on the input."""
748
+ # x = jnp.asarray(x, jnp.float32)
749
+ # features = x.shape[-1]
750
+ # mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True)
751
+ # y = jnp.asarray(x * lax.rsqrt(mean2 + self.epsilon), self.dtype)
752
+ # scale = param_with_axes(
753
+ # 'scale', self.scale_init, (features,), jnp.float32, axes=('embed',))
754
+
755
+ # scale = jnp.asarray(scale, self.dtype)
756
+ # return y * scale
757
+
758
+
759
+ class LayerNorm(nn.Module):
760
+ """Layer normalization (https://arxiv.org/abs/1607.06450).
761
+ Operates on the last axis of the input data.
762
+ It normalizes the activations of the layer for each given example in a
763
+ batch independently, rather than across a batch like Batch Normalization.
764
+ i.e. applies a transformation that maintains the mean activation within
765
+ each example close to 0 and the activation standard deviation close to 1.
766
+ Attributes:
767
+ epsilon: A small float added to variance to avoid dividing by zero.
768
+ dtype: the dtype of the computation (default: float32).
769
+ use_bias: If True, bias (beta) is added.
770
+ use_scale: If True, multiply by scale (gamma). When the next layer is linear
771
+ (also e.g. nn.relu), this can be disabled since the scaling will be done
772
+ by the next layer.
773
+ bias_init: Initializer for bias, by default, zero.
774
+ scale_init: Initializer for scale, by default, one.
775
+ """
776
+
777
+ epsilon: float = 1e-6
778
+ dtype: Any = jnp.float32
779
+ params_dtype: DType = jnp.float32
780
+ use_bias: bool = True
781
+ use_scale: bool = True
782
+ bias_init: Callable[[PRNGKey, Shape, Any], Array] = nn.initializers.zeros
783
+ scale_init: Callable[[PRNGKey, Shape, Any], Array] = nn.initializers.ones
784
+
785
+ @nn.compact
786
+ def __call__(self, x):
787
+ """Applies layer normalization on the input.
788
+ Args:
789
+ x: the inputs
790
+ Returns:
791
+ Normalized inputs (the same shape as inputs).
792
+ """
793
+ x = jnp.asarray(x, jnp.float32)
794
+ features = x.shape[-1]
795
+ mean = jnp.mean(x, axis=-1, keepdims=True)
796
+ mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True)
797
+ var = mean2 - lax.square(mean)
798
+ mul = lax.rsqrt(var + self.epsilon)
799
+ if self.use_scale:
800
+ scale = param_with_axes(
801
+ "scale",
802
+ self.scale_init,
803
+ (features,),
804
+ self.params_dtype,
805
+ axes=("embed",),
806
+ )
807
+ mul = mul * jnp.asarray(scale, self.dtype)
808
+ y = (x - mean) * mul
809
+ if self.use_bias:
810
+ bias = param_with_axes("bias", self.bias_init, (features,), self.params_dtype, axes=("embed",))
811
+ y = y + jnp.asarray(bias, self.dtype)
812
+ return jnp.asarray(y, self.dtype)
813
+
814
+
815
+ # ------------------------------------------------------------------------------
816
+ # Mask-making utility functions.
817
+ # ------------------------------------------------------------------------------
818
+ def make_attention_mask(
819
+ query_input: Array,
820
+ key_input: Array,
821
+ pairwise_fn: Callable = jnp.multiply,
822
+ extra_batch_dims: int = 0,
823
+ dtype: DType = jnp.float32,
824
+ ) -> Array:
825
+ """Mask-making helper for attention weights.
826
+
827
+ In case of 1d inputs (i.e., `[batch, len_q]`, `[batch, len_kv]`, the
828
+ attention weights will be `[batch, heads, len_q, len_kv]` and this
829
+ function will produce `[batch, 1, len_q, len_kv]`.
830
+
831
+ Args:
832
+ query_input: a batched, flat input of query_length size
833
+ key_input: a batched, flat input of key_length size
834
+ pairwise_fn: broadcasting elementwise comparison function
835
+ extra_batch_dims: number of extra batch dims to add singleton axes for, none
836
+ by default
837
+ dtype: mask return dtype
838
+
839
+ Returns:
840
+ A `[batch, 1, len_q, len_kv]` shaped mask for 1d attention.
841
+ """
842
+ # [batch, len_q, len_kv]
843
+ mask = pairwise_fn(
844
+ # [batch, len_q] -> [batch, len_q, 1]
845
+ jnp.expand_dims(query_input, axis=-1),
846
+ # [batch, len_q] -> [batch, 1, len_kv]
847
+ jnp.expand_dims(key_input, axis=-2),
848
+ )
849
+
850
+ # [batch, 1, len_q, len_kv]. This creates the head dim.
851
+ mask = jnp.expand_dims(mask, axis=-3)
852
+ mask = jnp.expand_dims(mask, axis=tuple(range(extra_batch_dims)))
853
+ return mask.astype(dtype)
854
+
855
+
856
+ def make_causal_mask(x: Array, extra_batch_dims: int = 0, dtype: DType = jnp.float32) -> Array:
857
+ """Make a causal mask for self-attention.
858
+
859
+ In case of 1d inputs (i.e., `[batch, len]`, the self-attention weights
860
+ will be `[batch, heads, len, len]` and this function will produce a
861
+ causal mask of shape `[batch, 1, len, len]`.
862
+
863
+ Note that a causal mask does not depend on the values of x; it only depends on
864
+ the shape. If x has padding elements, they will not be treated in a special
865
+ manner.
866
+
867
+ Args:
868
+ x: input array of shape `[batch, len]`
869
+ extra_batch_dims: number of batch dims to add singleton axes for, none by
870
+ default
871
+ dtype: mask return dtype
872
+
873
+ Returns:
874
+ A `[batch, 1, len, len]` shaped causal mask for 1d attention.
875
+ """
876
+ idxs = jnp.broadcast_to(jnp.arange(x.shape[-1], dtype=jnp.int32), x.shape)
877
+ return make_attention_mask(idxs, idxs, jnp.greater_equal, extra_batch_dims=extra_batch_dims, dtype=dtype)
878
+
879
+
880
+ def combine_masks(*masks: Optional[Array], dtype: DType = jnp.float32):
881
+ """Combine attention masks.
882
+
883
+ Args:
884
+ *masks: set of attention mask arguments to combine, some can be None.
885
+ dtype: final mask dtype
886
+
887
+ Returns:
888
+ Combined mask, reduced by logical and, returns None if no masks given.
889
+ """
890
+ masks = [m for m in masks if m is not None]
891
+ if not masks:
892
+ return None
893
+ assert all(
894
+ (x.ndim == masks[0].ndim for x in masks)
895
+ ), f"masks must have same rank: {tuple((x.ndim for x in masks))}"
896
+ mask, *other_masks = masks
897
+ for other_mask in other_masks:
898
+ mask = jnp.logical_and(mask, other_mask)
899
+ return mask.astype(dtype)
900
+
901
+
902
+ def combine_biases(*masks: Optional[Array]):
903
+ """Combine attention biases.
904
+
905
+ Args:
906
+ *masks: set of attention bias arguments to combine, some can be None.
907
+
908
+ Returns:
909
+ Combined mask, reduced by summation, returns None if no masks given.
910
+ """
911
+ masks = [m for m in masks if m is not None]
912
+ if not masks:
913
+ return None
914
+ assert all(
915
+ (x.ndim == masks[0].ndim for x in masks)
916
+ ), f"masks must have same rank: {tuple((x.ndim for x in masks))}"
917
+ mask, *other_masks = masks
918
+ for other_mask in other_masks:
919
+ mask = mask + other_mask
920
+ return mask
921
+
922
+
923
+ def make_decoder_mask(
924
+ decoder_target_tokens: Array,
925
+ dtype: DType,
926
+ decoder_causal_attention: Optional[Array] = None,
927
+ decoder_segment_ids: Optional[Array] = None,
928
+ ) -> Array:
929
+ """Compute the self-attention mask for a decoder.
930
+
931
+ Decoder mask is formed by combining a causal mask, a padding mask and an
932
+ optional packing mask. If decoder_causal_attention is passed, it makes the
933
+ masking non-causal for positions that have value of 1.
934
+
935
+ A prefix LM is applied to a dataset which has a notion of "inputs" and
936
+ "targets", e.g., a machine translation task. The inputs and targets are
937
+ concatenated to form a new target. `decoder_target_tokens` is the concatenated
938
+ decoder output tokens.
939
+
940
+ The "inputs" portion of the concatenated sequence can attend to other "inputs"
941
+ tokens even for those at a later time steps. In order to control this
942
+ behavior, `decoder_causal_attention` is necessary. This is a binary mask with
943
+ a value of 1 indicating that the position belonged to "inputs" portion of the
944
+ original dataset.
945
+
946
+ Example:
947
+
948
+ Suppose we have a dataset with two examples.
949
+
950
+ ds = [{"inputs": [6, 7], "targets": [8]},
951
+ {"inputs": [3, 4], "targets": [5]}]
952
+
953
+ After the data preprocessing with packing, the two examples are packed into
954
+ one example with the following three fields (some fields are skipped for
955
+ simplicity).
956
+
957
+ decoder_target_tokens = [[6, 7, 8, 3, 4, 5, 0]]
958
+ decoder_segment_ids = [[1, 1, 1, 2, 2, 2, 0]]
959
+ decoder_causal_attention = [[1, 1, 0, 1, 1, 0, 0]]
960
+
961
+ where each array has [batch, length] shape with batch size being 1. Then,
962
+ this function computes the following mask.
963
+
964
+ mask = [[[[1, 1, 0, 0, 0, 0, 0],
965
+ [1, 1, 0, 0, 0, 0, 0],
966
+ [1, 1, 1, 0, 0, 0, 0],
967
+ [0, 0, 0, 1, 1, 0, 0],
968
+ [0, 0, 0, 1, 1, 0, 0],
969
+ [0, 0, 0, 1, 1, 1, 0],
970
+ [0, 0, 0, 0, 0, 0, 0]]]]
971
+
972
+ mask[b, 1, :, :] represents the mask for the example `b` in the batch.
973
+ Because mask is for a self-attention layer, the mask's shape is a square of
974
+ shape [query length, key length].
975
+
976
+ mask[b, 1, i, j] = 1 means that the query token at position i can attend to
977
+ the key token at position j.
978
+
979
+ Args:
980
+ decoder_target_tokens: decoder output tokens. [batch, length]
981
+ dtype: dtype of the output mask.
982
+ decoder_causal_attention: a binary mask indicating which position should
983
+ only attend to earlier positions in the sequence. Others will attend
984
+ bidirectionally. [batch, length]
985
+ decoder_segment_ids: decoder segmentation info for packed examples. [batch,
986
+ length]
987
+
988
+ Returns:
989
+ the combined decoder mask.
990
+ """
991
+ masks = []
992
+ # The same mask is applied to all attention heads. So the head dimension is 1,
993
+ # i.e., the mask will be broadcast along the heads dim.
994
+ # [batch, 1, length, length]
995
+ causal_mask = make_causal_mask(decoder_target_tokens, dtype=dtype)
996
+
997
+ # Positions with value 1 in `decoder_causal_attneition` can attend
998
+ # bidirectionally.
999
+ if decoder_causal_attention is not None:
1000
+ # [batch, 1, length, length]
1001
+ inputs_mask = make_attention_mask(
1002
+ decoder_causal_attention,
1003
+ decoder_causal_attention,
1004
+ jnp.logical_and,
1005
+ dtype=dtype,
1006
+ )
1007
+ masks.append(jnp.logical_or(causal_mask, inputs_mask).astype(dtype))
1008
+ else:
1009
+ masks.append(causal_mask)
1010
+
1011
+ # Padding mask.
1012
+ masks.append(make_attention_mask(decoder_target_tokens > 0, decoder_target_tokens > 0, dtype=dtype))
1013
+
1014
+ # Packing mask
1015
+ if decoder_segment_ids is not None:
1016
+ masks.append(make_attention_mask(decoder_segment_ids, decoder_segment_ids, jnp.equal, dtype=dtype))
1017
+
1018
+ return combine_masks(*masks, dtype=dtype)
1019
+
1020
+
1021
+ def canonicalize_padding(padding: PaddingLike, rank: int) -> LaxPadding:
1022
+ """ "Canonicalizes conv padding to a jax.lax supported format."""
1023
+ if isinstance(padding, str):
1024
+ return padding
1025
+ if isinstance(padding, int):
1026
+ return [(padding, padding)] * rank
1027
+ if isinstance(padding, Sequence) and len(padding) == rank:
1028
+ new_pad = []
1029
+ for p in padding:
1030
+ if isinstance(p, int):
1031
+ new_pad.append((p, p))
1032
+ elif isinstance(p, tuple) and len(p) == 2:
1033
+ new_pad.append(p)
1034
+ else:
1035
+ break
1036
+ if len(new_pad) == rank:
1037
+ return new_pad
1038
+ raise ValueError(
1039
+ f"Invalid padding format: {padding}, should be str, int,"
1040
+ f" or a sequence of len {rank} where each element is an"
1041
+ " int or pair of ints."
1042
+ )
1043
+
1044
+
1045
+ def _conv_dimension_numbers(input_shape):
1046
+ """Computes the dimension numbers based on the input shape."""
1047
+ ndim = len(input_shape)
1048
+ lhs_spec = (0, ndim - 1) + tuple(range(1, ndim - 1))
1049
+ rhs_spec = (ndim - 1, ndim - 2) + tuple(range(0, ndim - 2))
1050
+ out_spec = lhs_spec
1051
+ return lax.ConvDimensionNumbers(lhs_spec, rhs_spec, out_spec)
1052
+
1053
+
1054
+ class _Conv(nn.Module):
1055
+ """Convolution Module wrapping `lax.conv_general_dilated[_local]`.
1056
+
1057
+ Attributes:
1058
+ features: number of convolution filters.
1059
+ kernel_size: shape of the convolutional kernel. For 1D convolution,
1060
+ the kernel size can be passed as an integer. For all other cases, it must
1061
+ be a sequence of integers.
1062
+ strides: an integer or a sequence of `n` integers, representing the
1063
+ inter-window strides (default: 1).
1064
+ padding: either the string `'SAME'`, the string `'VALID'`, the string
1065
+ `'CIRCULAR'` (periodic boundary conditions), or a sequence of `n` `(low,
1066
+ high)` integer pairs that give the padding to apply before and after each
1067
+ spatial dimension. A single int is interpeted as applying the same padding
1068
+ in all dims and passign a single int in a sequence causes the same padding
1069
+ to be used on both sides. `'CAUSAL'` padding for a 1D convolution will
1070
+ left-pad the convolution axis, resulting in same-sized output.
1071
+ input_dilation: an integer or a sequence of `n` integers, giving the
1072
+ dilation factor to apply in each spatial dimension of `inputs`
1073
+ (default: 1). Convolution with input dilation `d` is equivalent to
1074
+ transposed convolution with stride `d`.
1075
+ kernel_dilation: an integer or a sequence of `n` integers, giving the
1076
+ dilation factor to apply in each spatial dimension of the convolution
1077
+ kernel (default: 1). Convolution with kernel dilation
1078
+ is also known as 'atrous convolution'.
1079
+ feature_group_count: integer, default 1. If specified divides the input
1080
+ features into groups.
1081
+ use_bias: whether to add a bias to the output (default: True).
1082
+ mask: Optional mask for the weights during masked convolution. The mask must
1083
+ be the same shape as the convolution weight matrix.
1084
+ dtype: the dtype of the computation (default: infer from input and params).
1085
+ params_dtype: the dtype passed to parameter initializers (default: float32).
1086
+ precision: numerical precision of the computation see `jax.lax.Precision`
1087
+ for details.
1088
+ kernel_init: initializer for the convolutional kernel.
1089
+ bias_init: initializer for the bias.
1090
+ """
1091
+
1092
+ features: int
1093
+ kernel_size: Sequence[int]
1094
+ strides: Union[None, int, Sequence[int]] = 1
1095
+ padding: PaddingLike = "SAME"
1096
+ input_dilation: Union[None, int, Sequence[int]] = 1
1097
+ kernel_dilation: Union[None, int, Sequence[int]] = 1
1098
+ feature_group_count: int = 1
1099
+ use_bias: bool = True
1100
+ mask: Optional[Array] = None
1101
+ dtype: Optional[DType] = None
1102
+ params_dtype: DType = jnp.float32
1103
+ precision: PrecisionLike = None
1104
+ kernel_init: Callable[[PRNGKey, Shape, DType], Array] = nn.initializers.lecun_normal()
1105
+ bias_init: Callable[[PRNGKey, Shape, DType], Array] = nn.initializers.zeros
1106
+ conv_general_dilated: ConvGeneralDilatedT = lax.conv_general_dilated
1107
+ kernel_axes: Tuple[str, ...] = ()
1108
+
1109
+ @property
1110
+ def shared_weights(self) -> bool: # type: ignore
1111
+ """Defines whether weights are shared or not between different pixels.
1112
+
1113
+ Returns:
1114
+ `True` to use shared weights in convolution (regular convolution).
1115
+ `False` to use different weights at different pixels, a.k.a.
1116
+ "locally connected layer", "unshared convolution", or "local convolution".
1117
+
1118
+ """
1119
+ ...
1120
+
1121
+ @nn.compact
1122
+ def __call__(self, inputs: Array) -> Array:
1123
+ """Applies a (potentially unshared) convolution to the inputs.
1124
+
1125
+ Args:
1126
+ inputs: input data with dimensions (*batch_dims, spatial_dims...,
1127
+ features). This is the channels-last convention, i.e. NHWC for a 2d
1128
+ convolution and NDHWC for a 3D convolution. Note: this is different from
1129
+ the input convention used by `lax.conv_general_dilated`, which puts the
1130
+ spatial dimensions last.
1131
+ Note: If the input has more than 1 batch dimension, all batch dimensions
1132
+ are flattened into a single dimension for the convolution and restored
1133
+ before returning. In some cases directly vmap'ing the layer may yield
1134
+ better performance than this default flattening approach. If the input
1135
+ lacks a batch dimension it will be added for the convolution and removed
1136
+ n return, an allowance made to enable writing single-example code.
1137
+
1138
+ Returns:
1139
+ The convolved data.
1140
+ """
1141
+
1142
+ if isinstance(self.kernel_size, int):
1143
+ raise TypeError(
1144
+ "Expected Conv kernel_size to be a"
1145
+ " tuple/list of integers (eg.: [3, 3]) but got"
1146
+ f" {self.kernel_size}."
1147
+ )
1148
+ else:
1149
+ kernel_size = tuple(self.kernel_size)
1150
+
1151
+ def maybe_broadcast(x: Optional[Union[int, Sequence[int]]]) -> Tuple[int, ...]:
1152
+ if x is None:
1153
+ # backward compatibility with using None as sentinel for
1154
+ # broadcast 1
1155
+ x = 1
1156
+ if isinstance(x, int):
1157
+ return (x,) * len(kernel_size)
1158
+ return tuple(x)
1159
+
1160
+ # Combine all input batch dimensions into a single leading batch axis.
1161
+ num_batch_dimensions = inputs.ndim - (len(kernel_size) + 1)
1162
+ if num_batch_dimensions != 1:
1163
+ input_batch_shape = inputs.shape[:num_batch_dimensions]
1164
+ total_batch_size = int(np.prod(input_batch_shape))
1165
+ flat_input_shape = (total_batch_size,) + inputs.shape[num_batch_dimensions:]
1166
+ inputs = jnp.reshape(inputs, flat_input_shape)
1167
+
1168
+ # self.strides or (1,) * (inputs.ndim - 2)
1169
+ strides = maybe_broadcast(self.strides)
1170
+ input_dilation = maybe_broadcast(self.input_dilation)
1171
+ kernel_dilation = maybe_broadcast(self.kernel_dilation)
1172
+
1173
+ padding_lax = canonicalize_padding(self.padding, len(kernel_size))
1174
+ if padding_lax == "CIRCULAR":
1175
+ kernel_size_dilated = [(k - 1) * d + 1 for k, d in zip(kernel_size, kernel_dilation)]
1176
+ zero_pad: List[Tuple[int, int]] = [(0, 0)]
1177
+ pads = zero_pad + [((k - 1) // 2, k // 2) for k in kernel_size_dilated] + [(0, 0)]
1178
+ inputs = jnp.pad(inputs, pads, mode="wrap")
1179
+ padding_lax = "VALID"
1180
+ elif padding_lax == "CAUSAL":
1181
+ if len(kernel_size) != 1:
1182
+ raise ValueError("Causal padding is only implemented for 1D convolutions.")
1183
+ left_pad = kernel_dilation[0] * (kernel_size[0] - 1)
1184
+ pads = [(0, 0), (left_pad, 0), (0, 0)]
1185
+ inputs = jnp.pad(inputs, pads)
1186
+ padding_lax = "VALID"
1187
+
1188
+ dimension_numbers = _conv_dimension_numbers(inputs.shape)
1189
+ in_features = jnp.shape(inputs)[-1]
1190
+
1191
+ if self.shared_weights:
1192
+ # One shared convolutional kernel for all pixels in the output.
1193
+ assert in_features % self.feature_group_count == 0
1194
+ kernel_shape = kernel_size + (
1195
+ in_features // self.feature_group_count,
1196
+ self.features,
1197
+ )
1198
+
1199
+ else:
1200
+ if self.feature_group_count != 1:
1201
+ raise NotImplementedError(
1202
+ "`lax.conv_general_dilated_local` does not support "
1203
+ f"`feature_group_count != 1`, got `{self.feature_group_count}`."
1204
+ )
1205
+
1206
+ # Need to know the spatial output shape of a standard convolution to
1207
+ # create the unshared convolution kernel.
1208
+ conv_output_shape = jax.eval_shape(
1209
+ lambda lhs, rhs: self.conv_general_dilated( # pylint: disable=g-long-lambda
1210
+ lhs=lhs,
1211
+ rhs=rhs,
1212
+ window_strides=strides,
1213
+ padding=padding_lax,
1214
+ dimension_numbers=dimension_numbers,
1215
+ lhs_dilation=input_dilation,
1216
+ rhs_dilation=kernel_dilation,
1217
+ ),
1218
+ inputs,
1219
+ jax.ShapedArray(kernel_size + (in_features, self.features), inputs.dtype),
1220
+ ).shape
1221
+
1222
+ # One (unshared) convolutional kernel per each pixel in the output.
1223
+ kernel_shape = conv_output_shape[1:-1] + (
1224
+ np.prod(kernel_size) * in_features,
1225
+ self.features,
1226
+ )
1227
+
1228
+ if self.mask is not None and self.mask.shape != kernel_shape:
1229
+ raise ValueError(
1230
+ "Mask needs to have the same shape as weights. " f"Shapes are: {self.mask.shape}, {kernel_shape}"
1231
+ )
1232
+
1233
+ kernel = param_with_axes(
1234
+ "kernel",
1235
+ self.kernel_init,
1236
+ kernel_shape,
1237
+ self.params_dtype,
1238
+ axes=self.kernel_axes,
1239
+ )
1240
+
1241
+ if self.mask is not None:
1242
+ kernel *= self.mask
1243
+
1244
+ if self.use_bias:
1245
+ if self.shared_weights:
1246
+ # One bias weight per output channel, shared between pixels.
1247
+ bias_shape = (self.features,)
1248
+ else:
1249
+ # One bias weight per output entry, unshared betwen pixels.
1250
+ bias_shape = conv_output_shape[1:]
1251
+
1252
+ bias = param_with_axes(
1253
+ "bias",
1254
+ self.bias_init,
1255
+ bias_shape,
1256
+ self.params_dtype,
1257
+ axes=(self.kernel_axes[-1],),
1258
+ )
1259
+ else:
1260
+ bias = None
1261
+
1262
+ inputs, kernel, bias = promote_dtype(inputs, kernel, bias, dtype=self.dtype)
1263
+ if self.shared_weights:
1264
+ y = self.conv_general_dilated(
1265
+ inputs,
1266
+ kernel,
1267
+ strides,
1268
+ padding_lax,
1269
+ lhs_dilation=input_dilation,
1270
+ rhs_dilation=kernel_dilation,
1271
+ dimension_numbers=dimension_numbers,
1272
+ feature_group_count=self.feature_group_count,
1273
+ precision=self.precision,
1274
+ )
1275
+ else:
1276
+ y = lax.conv_general_dilated_local(
1277
+ lhs=inputs,
1278
+ rhs=kernel,
1279
+ window_strides=strides,
1280
+ padding=padding_lax,
1281
+ filter_shape=kernel_size,
1282
+ lhs_dilation=input_dilation,
1283
+ rhs_dilation=kernel_dilation,
1284
+ dimension_numbers=dimension_numbers,
1285
+ precision=self.precision,
1286
+ )
1287
+
1288
+ if self.use_bias:
1289
+ bias = bias.reshape((1,) * (y.ndim - bias.ndim) + bias.shape)
1290
+ y += bias
1291
+
1292
+ if num_batch_dimensions != 1:
1293
+ output_shape = input_batch_shape + y.shape[1:]
1294
+ y = jnp.reshape(y, output_shape)
1295
+ return y
1296
+
1297
+
1298
+ class Conv(_Conv):
1299
+ """Convolution Module wrapping `lax.conv_general_dilated`.
1300
+
1301
+ Attributes:
1302
+ features: number of convolution filters.
1303
+ kernel_size: shape of the convolutional kernel. For 1D convolution,
1304
+ the kernel size can be passed as an integer. For all other cases, it must
1305
+ be a sequence of integers.
1306
+ strides: an integer or a sequence of `n` integers, representing the
1307
+ inter-window strides (default: 1).
1308
+ padding: either the string `'SAME'`, the string `'VALID'`, the string
1309
+ `'CIRCULAR'` (periodic boundary conditions), or a sequence of `n` `(low,
1310
+ high)` integer pairs that give the padding to apply before and after each
1311
+ spatial dimension. A single int is interpeted as applying the same padding
1312
+ in all dims and passign a single int in a sequence causes the same padding
1313
+ to be used on both sides. `'CAUSAL'` padding for a 1D convolution will
1314
+ left-pad the convolution axis, resulting in same-sized output.
1315
+ input_dilation: an integer or a sequence of `n` integers, giving the
1316
+ dilation factor to apply in each spatial dimension of `inputs`
1317
+ (default: 1). Convolution with input dilation `d` is equivalent to
1318
+ transposed convolution with stride `d`.
1319
+ kernel_dilation: an integer or a sequence of `n` integers, giving the
1320
+ dilation factor to apply in each spatial dimension of the convolution
1321
+ kernel (default: 1). Convolution with kernel dilation
1322
+ is also known as 'atrous convolution'.
1323
+ feature_group_count: integer, default 1. If specified divides the input
1324
+ features into groups.
1325
+ use_bias: whether to add a bias to the output (default: True).
1326
+ mask: Optional mask for the weights during masked convolution. The mask must
1327
+ be the same shape as the convolution weight matrix.
1328
+ dtype: the dtype of the computation (default: infer from input and params).
1329
+ params_dtype: the dtype passed to parameter initializers (default: float32).
1330
+ precision: numerical precision of the computation see `jax.lax.Precision`
1331
+ for details.
1332
+ kernel_init: initializer for the convolutional kernel.
1333
+ bias_init: initializer for the bias.
1334
+ """
1335
+
1336
+ @property
1337
+ def shared_weights(self) -> bool:
1338
+ return True
distil_whisper/modeling_flax_whisper.py ADDED
@@ -0,0 +1,2136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Flax whisper model."""
16
+
17
+ import random
18
+ from functools import partial
19
+ from typing import Dict, Optional, Tuple, Union
20
+
21
+ import flax.linen as nn
22
+ import jax
23
+ import jax.numpy as jnp
24
+ from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
25
+ from flax.linen import combine_masks, make_causal_mask
26
+ from flax.linen.attention import dot_product_attention_weights
27
+ from flax.linen.partitioning import remat, scan_with_axes
28
+ from flax.traverse_util import flatten_dict, unflatten_dict
29
+ from jax import lax
30
+ from jax.random import PRNGKey
31
+ from transformers import WhisperConfig
32
+ from transformers.generation.flax_logits_process import (
33
+ FlaxLogitsProcessor,
34
+ FlaxLogitsProcessorList,
35
+ FlaxWhisperTimeStampLogitsProcessor,
36
+ )
37
+ from transformers.modeling_flax_outputs import (
38
+ FlaxBaseModelOutput,
39
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
40
+ FlaxCausalLMOutputWithCrossAttentions,
41
+ FlaxSeq2SeqLMOutput,
42
+ FlaxSeq2SeqModelOutput,
43
+ )
44
+ from transformers.modeling_flax_utils import (
45
+ ACT2FN,
46
+ FlaxPreTrainedModel,
47
+ append_call_sample_docstring,
48
+ append_replace_return_docstrings,
49
+ overwrite_call_docstring,
50
+ )
51
+ from transformers.utils import (
52
+ add_start_docstrings,
53
+ add_start_docstrings_to_model_forward,
54
+ logging,
55
+ replace_return_docstrings,
56
+ )
57
+
58
+ from .layers import Conv, DenseGeneral, Embed, LayerNorm, with_sharding_constraint
59
+
60
+
61
+ logger = logging.get_logger(__name__)
62
+
63
+
64
+ _CHECKPOINT_FOR_DOC = "openai/whisper-tiny"
65
+ _CONFIG_FOR_DOC = "WhisperConfig"
66
+
67
+
68
+ WHISPER_START_DOCSTRING = r"""
69
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
70
+ library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads
71
+ etc.) This model is also a Flax Linen
72
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
73
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
74
+ Finally, this model supports inherent JAX features such as:
75
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
76
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
77
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
78
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
79
+
80
+ Parameters:
81
+ config ([`WhisperConfig`]): Model configuration class with all the parameters of the model.
82
+ Initializing with a config file does not load the weights associated with the model, only the
83
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
84
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
85
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
86
+ `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision
87
+ inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`.
88
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
89
+ parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`]
90
+ and [`~FlaxPreTrainedModel.to_bf16`].
91
+ """
92
+
93
+ WHISPER_INPUTS_DOCSTRING = r"""
94
+ Args:
95
+ input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`):
96
+ Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
97
+ loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
98
+ the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
99
+ [`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a
100
+ tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]
101
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
102
+ Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but
103
+ is not used. By default the silence in the input log mel spectrogram are ignored.
104
+ decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
105
+ Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using
106
+ [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
107
+ [What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as
108
+ the starting token for `decoder_input_ids` generation.
109
+ decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
110
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
111
+ be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1
112
+ in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
113
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
114
+ Whisper does not use `position_ids` in the encoder as `input_features` is always the same size and doesn't
115
+ use masking, but this argument is preserved for compatibility. By default the silence in the input log mel
116
+ spectrogram are ignored.
117
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
118
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
119
+ range `[0, config.max_position_embeddings - 1]`.
120
+ output_attentions (`bool`, *optional*):
121
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
122
+ tensors for more detail.
123
+ output_hidden_states (`bool`, *optional*):
124
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
125
+ more detail.
126
+ return_dict (`bool`, *optional*):
127
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
128
+ """
129
+
130
+ WHISPER_ENCODE_INPUTS_DOCSTRING = r"""
131
+ Args:
132
+ input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`):
133
+ Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
134
+ loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
135
+ the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
136
+ [`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
137
+ tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`].
138
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
139
+ Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but
140
+ is not used. By default the silence in the input log mel spectrogram are ignored.
141
+ output_attentions (`bool`, *optional*):
142
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
143
+ tensors for more detail.
144
+ output_hidden_states (`bool`, *optional*):
145
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
146
+ more detail.
147
+ return_dict (`bool`, *optional*):
148
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
149
+ """
150
+
151
+ WHISPER_DECODE_INPUTS_DOCSTRING = r"""
152
+ Args:
153
+ decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`):
154
+ Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using
155
+ [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
156
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
157
+ encoder_outputs (`tuple(tuple(numpy.ndarray)`):
158
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
159
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
160
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
161
+ encoder_attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
162
+ Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
163
+ but it is not used. By default the silence in the input log mel spectrogram are ignored.
164
+ decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
165
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
166
+ be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1
167
+ in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
168
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
169
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
170
+ range `[0, config.max_position_embeddings - 1]`.
171
+ past_key_values (`Dict[str, numpy.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
172
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
173
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
174
+ output_attentions (`bool`, *optional*):
175
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
176
+ tensors for more detail.
177
+ output_hidden_states (`bool`, *optional*):
178
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
179
+ more detail.
180
+ return_dict (`bool`, *optional*):
181
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
182
+ """
183
+
184
+
185
+ class FlaxStaticForceTokensLogitsProcessor(FlaxLogitsProcessor):
186
+ r"""
187
+ [`FlaxLogitsProcessor`] that takes a list of pairs of integers which indicates a mapping from generation indices to
188
+ token indices that will be forced before sampling. The processor will set their log probs to 0 and all other tokens
189
+ to `-inf` so that they are sampled at their corresponding index. This is a static version of the `transformers` logit
190
+ processor [`FlaxForceTokensLogitsProcessor`] that is compatible with sharded forced tokens.
191
+
192
+ Args:
193
+ force_token_map (`list`):
194
+ Map giving token ids and indices where they will be forced to be sampled.
195
+ """
196
+
197
+ def __init__(self, force_token_map):
198
+ # The generic `transformers` logit processor builds `force_token_array` as a dictionary - this is not a valid
199
+ # JAX type, and so we switch to using a JAX array instead
200
+ force_token_map = jnp.array(force_token_map)
201
+ # Converts the array of format [[index, token]] containing the tokens to be forced to an array, where the
202
+ # index of the array corresponds to the index of the token to be forced. For XLA compatibility,
203
+ # indexes without forced tokens will have a negative value. Note that the last token we ever need to force in
204
+ # Whisper is at position 3, so we only construct an array up to this index. The native version constructs a tensor
205
+ # dynamically according to the length of the `force_token_map`. Array shapes need to be concrete for XLA compatibility,
206
+ # so this is not permitted here.
207
+ force_token_array = jnp.ones(3, dtype=jnp.int32) * -1
208
+ for index, token in force_token_map:
209
+ force_token_array = force_token_array.at[index].set(token)
210
+ self.force_token_array = jnp.int32(force_token_array)
211
+
212
+ def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
213
+ def _force_token(generation_idx):
214
+ batch_size = scores.shape[0]
215
+ current_token = self.force_token_array[generation_idx]
216
+
217
+ new_scores = jnp.ones_like(scores, dtype=scores.dtype) * -float("inf")
218
+ updates = jnp.zeros((batch_size, 1), dtype=scores.dtype)
219
+ new_scores = lax.dynamic_update_slice(new_scores, updates, (0, current_token))
220
+ return new_scores
221
+
222
+ scores = lax.cond(
223
+ cur_len >= self.force_token_array.shape[0],
224
+ # If the current length is geq than the length of force_token_array, the processor does nothing.
225
+ lambda: scores,
226
+ # Otherwise, it may force a certain token.
227
+ lambda: lax.cond(
228
+ self.force_token_array[cur_len] >= 0,
229
+ # Only valid (positive) tokens are forced
230
+ lambda: _force_token(cur_len),
231
+ # Otherwise, the processor does nothing.
232
+ lambda: scores,
233
+ ),
234
+ )
235
+ return scores
236
+
237
+
238
+ class FlaxWhisperAttention(nn.Module):
239
+ config: WhisperConfig
240
+ embed_dim: int
241
+ num_heads: int
242
+ dropout: float = 0.0
243
+ causal: bool = False
244
+ bias: bool = True
245
+ dtype: jnp.dtype = jnp.float32
246
+ params_dtype: jnp.dtype = jnp.float32
247
+
248
+ def setup(self) -> None:
249
+ self.head_dim = self.embed_dim // self.num_heads
250
+ if self.head_dim * self.num_heads != self.embed_dim:
251
+ raise ValueError(
252
+ "embed_dim must be divisible by num_heads (got `embed_dim`:"
253
+ f" {self.embed_dim} and `num_heads`: {self.num_heads})."
254
+ )
255
+
256
+ dense = partial(
257
+ DenseGeneral,
258
+ self.embed_dim,
259
+ axis=-1,
260
+ dtype=self.dtype,
261
+ params_dtype=self.params_dtype,
262
+ kernel_axes=("embed", "joined_kv"),
263
+ )
264
+
265
+ self.q_proj = dense(use_bias=self.bias)
266
+ self.k_proj = dense(use_bias=False)
267
+ self.v_proj = dense(use_bias=self.bias)
268
+
269
+ self.out_proj = DenseGeneral(
270
+ self.embed_dim,
271
+ axis=-1,
272
+ dtype=self.dtype,
273
+ params_dtype=self.params_dtype,
274
+ kernel_axes=("joined_kv", "embed"),
275
+ use_bias=self.bias,
276
+ )
277
+
278
+ if self.causal:
279
+ self.causal_mask = make_causal_mask(
280
+ jnp.ones((1, self.config.max_target_positions), dtype="bool"),
281
+ dtype="bool",
282
+ )
283
+
284
+ def __call__(
285
+ self,
286
+ hidden_states: jnp.ndarray,
287
+ key_value_states: Optional[jnp.ndarray] = None,
288
+ attention_mask: Optional[jnp.ndarray] = None,
289
+ init_cache: bool = False,
290
+ deterministic: bool = True,
291
+ ) -> Tuple[jnp.ndarray]:
292
+ is_cross_attention = key_value_states is not None
293
+ batch_size = hidden_states.shape[0]
294
+
295
+ query_states = self.q_proj(hidden_states)
296
+
297
+ if is_cross_attention:
298
+ key_states = self.k_proj(key_value_states)
299
+ value_states = self.v_proj(key_value_states)
300
+ else:
301
+ key_states = self.k_proj(hidden_states)
302
+ value_states = self.v_proj(hidden_states)
303
+
304
+ query_states = self._split_heads(query_states)
305
+ key_states = self._split_heads(key_states)
306
+ value_states = self._split_heads(value_states)
307
+
308
+ query_states = with_sharding_constraint(query_states, ("batch", "length", "heads", "kv"))
309
+ key_states = with_sharding_constraint(key_states, ("batch", "length", "heads", "kv"))
310
+ value_states = with_sharding_constraint(value_states, ("batch", "length", "heads", "kv"))
311
+
312
+ if self.causal:
313
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
314
+ if self.has_variable("cache", "cached_key"):
315
+ mask_shift = self.variables["cache"]["cache_index"]
316
+ # max_length of cached_key is last dim
317
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[-1]
318
+ causal_mask = lax.dynamic_slice(
319
+ self.causal_mask,
320
+ (0, 0, mask_shift, 0),
321
+ (1, 1, query_length, max_decoder_length),
322
+ )
323
+ else:
324
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
325
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
326
+
327
+ # combine masks if needed
328
+ if attention_mask is not None and self.causal:
329
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
330
+ attention_mask = combine_masks(attention_mask, causal_mask)
331
+ elif self.causal:
332
+ attention_mask = causal_mask
333
+ elif attention_mask is not None:
334
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
335
+
336
+ # During fast autoregressive decoding, we feed one position at a time,
337
+ # and cache the keys and values step by step.
338
+
339
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
340
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
341
+ key_states, value_states, query_states, attention_mask
342
+ )
343
+
344
+ # Convert the boolean attention mask to an attention bias.
345
+ if attention_mask is not None:
346
+ # attention mask in the form of attention bias
347
+ attention_bias = lax.select(
348
+ attention_mask > 0,
349
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
350
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
351
+ )
352
+ else:
353
+ attention_bias = None
354
+
355
+ dropout_rng = None
356
+ if not deterministic and self.dropout > 0.0:
357
+ dropout_rng = self.make_rng("dropout")
358
+
359
+ attn_weights = dot_product_attention_weights(
360
+ query_states,
361
+ key_states,
362
+ bias=attention_bias,
363
+ dropout_rng=dropout_rng,
364
+ dropout_rate=self.dropout,
365
+ broadcast_dropout=True,
366
+ deterministic=deterministic,
367
+ dtype=self.dtype,
368
+ precision=None,
369
+ )
370
+
371
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
372
+ attn_output = self._merge_heads(attn_output)
373
+ attn_output = self.out_proj(attn_output)
374
+
375
+ return attn_output, attn_weights
376
+
377
+ def _split_heads(self, hidden_state) -> jnp.ndarray:
378
+ return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim))
379
+
380
+ def _merge_heads(self, hidden_state) -> jnp.ndarray:
381
+ return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,))
382
+
383
+ @nn.compact
384
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
385
+ # The following code is largely copied from: https://github.com/google-research/t5x/blob/63d9addf628c6d8c547a407a32095fcb527bb20b/t5x/examples/scalable_t5/layers.py#L280-L284
386
+ is_initialized = self.has_variable("cache", "cached_key")
387
+
388
+ # The key and value have dimension [batch_size, seq_length, num_heads, head_dim],
389
+ # but we cache them as [batch_size, num_heads, head_dim, seq_length] as a TPU
390
+ # fusion optimization. This also enables the "scatter via one-hot
391
+ # broadcast" trick, which means we do a one-hot broadcast instead of a
392
+ # scatter/gather operations, resulting in a 3-4x speedup in practice.
393
+ def swap_dims(x):
394
+ return x[:-3] + tuple(x[i] for i in [-2, -1, -3])
395
+
396
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, swap_dims(key.shape), key.dtype)
397
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, swap_dims(value.shape), value.dtype)
398
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
399
+
400
+ if is_initialized:
401
+ batch_size, num_heads, head_dim, seq_length = cached_key.value.shape
402
+ # During fast autoregressive decoding, we feed one position at a time,
403
+ # and cache the keys and values step by step.
404
+ # Sanity shape check of cached key against input query.
405
+ num_updated_cache_vectors = query.shape[1]
406
+ expected_shape = (batch_size, 1, num_heads, head_dim)
407
+ if num_updated_cache_vectors == 1 and expected_shape != query.shape:
408
+ raise ValueError(
409
+ "Autoregressive cache shape error, expected query shape"
410
+ f" {expected_shape} instead got {query.shape}"
411
+ )
412
+
413
+ # Create a OHE of the current index. NOTE: the index is increased below.
414
+ cur_index = cache_index.value
415
+
416
+ # In order to update the key, value caches with the current key and
417
+ # value, we move the seq_length axis to the back, similar to what we did for
418
+ # the cached ones above.
419
+ # Note these are currently the key and value of a single position, since
420
+ # we feed one position at a time.
421
+ one_token_key = jnp.moveaxis(key, -3, -1)
422
+ one_token_value = jnp.moveaxis(value, -3, -1)
423
+
424
+ # Update key, value caches with our new 1d spatial slices.
425
+ # We implement an efficient scatter into the cache via one-hot
426
+ # broadcast and addition.
427
+ if num_updated_cache_vectors > 1:
428
+ indices = jnp.eye(num_updated_cache_vectors, seq_length)[None, None]
429
+ key = cached_key.value + jnp.matmul(one_token_key, indices)
430
+ value = cached_value.value + jnp.matmul(one_token_value, indices)
431
+ else:
432
+ one_hot_indices = jax.nn.one_hot(cur_index, seq_length, dtype=key.dtype)
433
+ key = cached_key.value + one_token_key * one_hot_indices
434
+ value = cached_value.value + one_token_value * one_hot_indices
435
+
436
+ cached_key.value = key
437
+ cached_value.value = value
438
+ cache_index.value = cache_index.value + num_updated_cache_vectors
439
+
440
+ # Move the keys and values back to their original shapes.
441
+ key = jnp.moveaxis(key, -1, -3)
442
+ value = jnp.moveaxis(value, -1, -3)
443
+
444
+ # causal mask for cached decoder self-attention: our single query position should only
445
+ # attend to those key positions that have already been generated and cached, not the
446
+ # remaining zero elements.
447
+ pad_mask = jnp.broadcast_to(
448
+ jnp.arange(seq_length) < cur_index + num_updated_cache_vectors,
449
+ (batch_size,) + (1, num_updated_cache_vectors, seq_length),
450
+ )
451
+ attention_mask = combine_masks(pad_mask, attention_mask)
452
+
453
+ return key, value, attention_mask
454
+
455
+
456
+ class FlaxWhisperEncoderLayer(nn.Module):
457
+ config: WhisperConfig
458
+ dtype: jnp.dtype = jnp.float32
459
+ params_dtype: jnp.dtype = jnp.float32
460
+ use_scan: bool = False
461
+
462
+ def setup(self) -> None:
463
+ self.embed_dim = self.config.d_model
464
+ self.self_attn = FlaxWhisperAttention(
465
+ config=self.config,
466
+ embed_dim=self.embed_dim,
467
+ num_heads=self.config.encoder_attention_heads,
468
+ dropout=self.config.attention_dropout,
469
+ dtype=self.dtype,
470
+ params_dtype=self.params_dtype,
471
+ )
472
+ self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
473
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
474
+ self.activation_fn = ACT2FN[self.config.activation_function]
475
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
476
+ self.fc1 = DenseGeneral(
477
+ self.config.encoder_ffn_dim,
478
+ dtype=self.dtype,
479
+ params_dtype=self.params_dtype,
480
+ kernel_axes=("embed", "mlp"),
481
+ )
482
+ self.fc2 = DenseGeneral(
483
+ self.embed_dim,
484
+ dtype=self.dtype,
485
+ params_dtype=self.params_dtype,
486
+ kernel_axes=("mlp", "embed"),
487
+ )
488
+ self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
489
+
490
+ def __call__(
491
+ self,
492
+ hidden_states: jnp.ndarray,
493
+ attention_mask: jnp.ndarray,
494
+ output_attentions: bool = True,
495
+ deterministic: bool = True,
496
+ all_hidden_states=None, # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer
497
+ ) -> Tuple[jnp.ndarray]:
498
+ if self.use_scan:
499
+ hidden_states = hidden_states[0]
500
+
501
+ hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))
502
+
503
+ residual = hidden_states
504
+
505
+ layernorm_output = self.self_attn_layer_norm(hidden_states)
506
+ layernorm_output = with_sharding_constraint(layernorm_output, ("batch", "length", "embed"))
507
+
508
+ attn_output, attn_weights = self.self_attn(hidden_states=layernorm_output, attention_mask=attention_mask)
509
+ attn_output = self.dropout_layer(attn_output, deterministic=deterministic)
510
+ attn_output = residual + attn_output
511
+ attn_output = with_sharding_constraint(attn_output, ("batch", "length", "embed"))
512
+
513
+ residual = attn_output
514
+
515
+ post_layer_norm = self.final_layer_norm(attn_output)
516
+ post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed"))
517
+
518
+ fc1_output = self.activation_fn(self.fc1(post_layer_norm))
519
+ fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic)
520
+ fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp"))
521
+
522
+ hidden_states = self.fc2(fc1_output)
523
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
524
+ hidden_states = residual + hidden_states
525
+ hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))
526
+
527
+ outputs = (hidden_states,)
528
+
529
+ if output_attentions:
530
+ outputs += (attn_weights,)
531
+
532
+ if self.use_scan:
533
+ if all_hidden_states is not None:
534
+ all_hidden_states = all_hidden_states + (hidden_states,)
535
+ outputs = (
536
+ outputs,
537
+ all_hidden_states,
538
+ )
539
+
540
+ return outputs
541
+
542
+
543
+ class FlaxWhisperEncoderLayerCollection(nn.Module):
544
+ config: WhisperConfig
545
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
546
+ params_dtype: jnp.dtype = jnp.float32
547
+ use_scan: bool = False
548
+ gradient_checkpointing: bool = False
549
+
550
+ @nn.compact
551
+ def __call__(
552
+ self,
553
+ hidden_states,
554
+ attention_mask,
555
+ deterministic: bool = True,
556
+ output_attentions: bool = False,
557
+ output_hidden_states: bool = False,
558
+ return_dict: bool = True,
559
+ ):
560
+ all_attentions = () if output_attentions else None
561
+ all_hidden_states = () if output_hidden_states else None
562
+
563
+ FlaxWhisperEncoderCheckpointLayer = (
564
+ remat(
565
+ FlaxWhisperEncoderLayer,
566
+ static_argnums=(2, 3),
567
+ prevent_cse=not self.use_scan,
568
+ )
569
+ if self.gradient_checkpointing
570
+ else FlaxWhisperEncoderLayer
571
+ )
572
+
573
+ if self.use_scan:
574
+ if output_attentions:
575
+ raise ValueError("Cannot use `scan` with `output_attentions` set to True")
576
+
577
+ # nicest behaviour for scan is to let the compiler figure out the correct shapes for the hidden states
578
+ # so we'll just pass an empty tuple as the carry initializer and hold on to the first hidden states for later
579
+ input_hidden_states = hidden_states
580
+ hidden_states = (hidden_states,)
581
+
582
+ hidden_states, all_hidden_states = scan_with_axes(
583
+ FlaxWhisperEncoderCheckpointLayer,
584
+ variable_axes={"params": 0, "cache": 0},
585
+ split_rngs={"params": True, "dropout": True},
586
+ in_axes=(
587
+ nn.broadcast,
588
+ nn.broadcast,
589
+ nn.broadcast,
590
+ nn.broadcast,
591
+ ),
592
+ variable_carry="all_hidden_states",
593
+ length=self.config.encoder_layers,
594
+ )(
595
+ self.config,
596
+ dtype=self.dtype,
597
+ params_dtype=self.params_dtype,
598
+ use_scan=True,
599
+ name="FlaxEncoderScanLayers",
600
+ )(
601
+ hidden_states,
602
+ attention_mask,
603
+ output_attentions,
604
+ deterministic,
605
+ all_hidden_states, # tuple intializer (or None if not using output_hidden_states)
606
+ )
607
+
608
+ # remove the scan dimension
609
+ hidden_states = hidden_states[0]
610
+
611
+ if output_hidden_states:
612
+ # if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple
613
+ all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]])
614
+
615
+ else:
616
+ for layer_idx in range(self.config.encoder_layers):
617
+ if output_hidden_states:
618
+ all_hidden_states = all_hidden_states + (hidden_states,)
619
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
620
+ dropout_probability = random.uniform(0, 1)
621
+ if not deterministic and (dropout_probability < self.config.encoder_layerdrop): # skip the layer
622
+ layer_outputs = (None, None)
623
+ else:
624
+ layer_outputs = FlaxWhisperEncoderCheckpointLayer(
625
+ self.config,
626
+ dtype=self.dtype,
627
+ params_dtype=self.params_dtype,
628
+ name=str(layer_idx),
629
+ )(
630
+ hidden_states,
631
+ attention_mask,
632
+ output_attentions,
633
+ deterministic,
634
+ )
635
+ hidden_states = layer_outputs[0]
636
+ if output_attentions:
637
+ all_attentions = all_attentions + (layer_outputs[1],)
638
+
639
+ if output_hidden_states:
640
+ all_hidden_states += (hidden_states,)
641
+
642
+ outputs = (hidden_states, all_hidden_states, all_attentions)
643
+
644
+ if not return_dict:
645
+ return tuple(v for v in outputs if v is not None)
646
+
647
+ return FlaxBaseModelOutput(
648
+ last_hidden_state=hidden_states,
649
+ hidden_states=all_hidden_states,
650
+ attentions=all_attentions,
651
+ )
652
+
653
+
654
+ class FlaxWhisperDecoderLayer(nn.Module):
655
+ config: WhisperConfig
656
+ dtype: jnp.dtype = jnp.float32
657
+ params_dtype: jnp.dtype = jnp.float32
658
+ use_scan: bool = False
659
+
660
+ def setup(self) -> None:
661
+ self.embed_dim = self.config.d_model
662
+ self.self_attn = FlaxWhisperAttention(
663
+ config=self.config,
664
+ embed_dim=self.embed_dim,
665
+ num_heads=self.config.decoder_attention_heads,
666
+ dropout=self.config.attention_dropout,
667
+ causal=True,
668
+ dtype=self.dtype,
669
+ params_dtype=self.params_dtype,
670
+ )
671
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
672
+ self.activation_fn = ACT2FN[self.config.activation_function]
673
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
674
+
675
+ self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
676
+ self.encoder_attn = FlaxWhisperAttention(
677
+ config=self.config,
678
+ embed_dim=self.embed_dim,
679
+ num_heads=self.config.decoder_attention_heads,
680
+ dropout=self.config.attention_dropout,
681
+ dtype=self.dtype,
682
+ params_dtype=self.params_dtype,
683
+ )
684
+ self.encoder_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
685
+ self.fc1 = DenseGeneral(
686
+ self.config.decoder_ffn_dim,
687
+ dtype=self.dtype,
688
+ params_dtype=self.params_dtype,
689
+ kernel_axes=("embed", "mlp"),
690
+ )
691
+ self.fc2 = DenseGeneral(
692
+ self.embed_dim,
693
+ dtype=self.dtype,
694
+ params_dtype=self.params_dtype,
695
+ kernel_axes=("mlp", "embed"),
696
+ )
697
+ self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
698
+
699
+ def __call__(
700
+ self,
701
+ hidden_states: jnp.ndarray,
702
+ attention_mask: jnp.ndarray,
703
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
704
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
705
+ init_cache: bool = False,
706
+ output_attentions: bool = True,
707
+ deterministic: bool = True,
708
+ all_hidden_states=None, # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer
709
+ ) -> Tuple[jnp.ndarray]:
710
+ if self.use_scan:
711
+ hidden_states = hidden_states[0]
712
+
713
+ hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))
714
+
715
+ residual = hidden_states
716
+
717
+ layer_norm_output = self.self_attn_layer_norm(hidden_states)
718
+ layer_norm_output = with_sharding_constraint(layer_norm_output, ("batch", "length", "embed"))
719
+
720
+ # Self Attention
721
+ self_attn_output, self_attn_weights = self.self_attn(
722
+ hidden_states=layer_norm_output,
723
+ attention_mask=attention_mask,
724
+ init_cache=init_cache,
725
+ )
726
+ self_attn_output = self.dropout_layer(self_attn_output, deterministic=deterministic)
727
+ self_attn_output = residual + self_attn_output
728
+ self_attn_output = with_sharding_constraint(self_attn_output, ("batch", "length", "embed"))
729
+
730
+ # Cross-Attention Block
731
+ cross_attn_weights = None
732
+ if encoder_hidden_states is not None:
733
+ residual = self_attn_output
734
+
735
+ encoder_layer_norm_output = self.encoder_attn_layer_norm(self_attn_output)
736
+ encoder_layer_norm_output = with_sharding_constraint(
737
+ encoder_layer_norm_output, ("batch", "length", "embed")
738
+ )
739
+
740
+ cross_attn_output, cross_attn_weights = self.encoder_attn(
741
+ hidden_states=encoder_layer_norm_output,
742
+ key_value_states=encoder_hidden_states,
743
+ attention_mask=encoder_attention_mask,
744
+ )
745
+ cross_attn_output = self.dropout_layer(cross_attn_output, deterministic=deterministic)
746
+ cross_attn_output = residual + cross_attn_output
747
+ cross_attn_output = with_sharding_constraint(cross_attn_output, ("batch", "length", "embed"))
748
+
749
+ # Fully Connected
750
+ residual = cross_attn_output
751
+
752
+ post_layer_norm = self.final_layer_norm(cross_attn_output)
753
+ post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed"))
754
+
755
+ fc1_output = self.activation_fn(self.fc1(post_layer_norm))
756
+ fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic)
757
+ fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp"))
758
+
759
+ hidden_states = self.fc2(fc1_output)
760
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
761
+ hidden_states = residual + hidden_states
762
+ hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))
763
+
764
+ outputs = (hidden_states,)
765
+
766
+ if output_attentions:
767
+ outputs += (self_attn_weights, cross_attn_weights)
768
+
769
+ if self.use_scan:
770
+ if all_hidden_states is not None:
771
+ all_hidden_states = all_hidden_states + (hidden_states,)
772
+ outputs = (
773
+ outputs,
774
+ all_hidden_states,
775
+ )
776
+
777
+ return outputs
778
+
779
+
780
+ class FlaxWhisperDecoderLayerCollection(nn.Module):
781
+ config: WhisperConfig
782
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
783
+ params_dtype: jnp.dtype = jnp.float32
784
+ use_scan: bool = False
785
+ gradient_checkpointing: bool = False
786
+
787
+ @nn.compact
788
+ def __call__(
789
+ self,
790
+ hidden_states,
791
+ attention_mask,
792
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
793
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
794
+ deterministic: bool = True,
795
+ init_cache: bool = False,
796
+ output_attentions: bool = False,
797
+ output_hidden_states: bool = False,
798
+ return_dict: bool = True,
799
+ ):
800
+ # decoder layers
801
+ all_hidden_states = () if output_hidden_states else None
802
+ all_self_attns = () if output_attentions else None
803
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
804
+
805
+ FlaxWhisperDecoderCheckpointLayer = (
806
+ remat(
807
+ FlaxWhisperDecoderLayer,
808
+ static_argnums=(4, 5, 6),
809
+ prevent_cse=not self.use_scan,
810
+ )
811
+ if self.gradient_checkpointing
812
+ else FlaxWhisperDecoderLayer
813
+ )
814
+
815
+ if self.use_scan:
816
+ if output_attentions:
817
+ raise ValueError("Cannot use `scan` with `output_attentions` set to True")
818
+
819
+ input_hidden_states = hidden_states
820
+ hidden_states = (hidden_states,)
821
+
822
+ hidden_states, all_hidden_states = scan_with_axes(
823
+ FlaxWhisperDecoderCheckpointLayer,
824
+ variable_axes={"params": 0, "cache": 0},
825
+ split_rngs={"params": True, "dropout": True},
826
+ in_axes=(
827
+ nn.broadcast,
828
+ nn.broadcast,
829
+ nn.broadcast,
830
+ nn.broadcast,
831
+ nn.broadcast,
832
+ nn.broadcast,
833
+ nn.broadcast,
834
+ ),
835
+ variable_carry="all_hidden_states",
836
+ length=self.config.decoder_layers,
837
+ )(
838
+ self.config,
839
+ dtype=self.dtype,
840
+ params_dtype=self.params_dtype,
841
+ use_scan=True,
842
+ name="FlaxDecoderScanLayers",
843
+ )(
844
+ hidden_states,
845
+ attention_mask,
846
+ encoder_hidden_states,
847
+ encoder_attention_mask,
848
+ init_cache,
849
+ output_attentions,
850
+ deterministic,
851
+ all_hidden_states,
852
+ )
853
+ hidden_states = hidden_states[0]
854
+
855
+ if output_hidden_states:
856
+ # if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple
857
+ all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]])
858
+
859
+ else:
860
+ for layer_idx in range(self.config.decoder_layers):
861
+ if output_hidden_states:
862
+ all_hidden_states += (hidden_states,)
863
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
864
+ dropout_probability = random.uniform(0, 1)
865
+ if not deterministic and (dropout_probability < self.config.decoder_layerdrop):
866
+ layer_outputs = (None, None, None)
867
+ else:
868
+ layer_outputs = FlaxWhisperDecoderCheckpointLayer(
869
+ self.config,
870
+ dtype=self.dtype,
871
+ params_dtype=self.params_dtype,
872
+ name=str(layer_idx),
873
+ )(
874
+ hidden_states,
875
+ attention_mask,
876
+ encoder_hidden_states,
877
+ encoder_attention_mask,
878
+ init_cache,
879
+ output_attentions,
880
+ deterministic,
881
+ )
882
+
883
+ hidden_states = layer_outputs[0]
884
+ if output_attentions:
885
+ all_self_attns += (layer_outputs[1],)
886
+
887
+ if encoder_hidden_states is not None:
888
+ all_cross_attentions += (layer_outputs[2],)
889
+
890
+ # add hidden states from the last decoder layer
891
+ if output_hidden_states:
892
+ all_hidden_states += (hidden_states,)
893
+
894
+ outputs = [
895
+ hidden_states,
896
+ all_hidden_states,
897
+ all_self_attns,
898
+ all_cross_attentions,
899
+ ]
900
+
901
+ if not return_dict:
902
+ return tuple(v for v in outputs if v is not None)
903
+
904
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
905
+ last_hidden_state=hidden_states,
906
+ hidden_states=all_hidden_states,
907
+ attentions=all_self_attns,
908
+ cross_attentions=all_cross_attentions,
909
+ )
910
+
911
+
912
+ class FlaxWhisperEncoder(nn.Module):
913
+ config: WhisperConfig
914
+ dtype: jnp.dtype = jnp.float32
915
+ params_dtype: jnp.dtype = jnp.float32
916
+ use_scan: bool = False
917
+ gradient_checkpointing: bool = False
918
+
919
+ def setup(self) -> None:
920
+ self.conv1 = Conv(
921
+ self.config.d_model,
922
+ kernel_size=(3,),
923
+ padding=1,
924
+ dtype=self.dtype,
925
+ params_dtype=self.params_dtype,
926
+ kernel_axes=("channels", "num_mel", "embed"),
927
+ )
928
+ self.conv2 = Conv(
929
+ self.config.d_model,
930
+ kernel_size=(3,),
931
+ strides=2,
932
+ padding=1,
933
+ dtype=self.dtype,
934
+ params_dtype=self.params_dtype,
935
+ kernel_axes=("channels", "embed", "num_mel"),
936
+ )
937
+
938
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
939
+
940
+ self.layers = FlaxWhisperEncoderLayerCollection(
941
+ self.config,
942
+ dtype=self.dtype,
943
+ params_dtype=self.params_dtype,
944
+ use_scan=self.use_scan,
945
+ gradient_checkpointing=self.gradient_checkpointing,
946
+ )
947
+ self.embed_positions = Embed(
948
+ self.config.max_source_positions,
949
+ self.config.d_model,
950
+ dtype=self.dtype,
951
+ params_dtype=self.params_dtype,
952
+ )
953
+
954
+ self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
955
+
956
+ def __call__(
957
+ self,
958
+ input_features: jnp.ndarray,
959
+ output_attentions: bool = False,
960
+ output_hidden_states: bool = False,
961
+ return_dict: bool = True,
962
+ deterministic: bool = True,
963
+ ) -> Tuple[jnp.ndarray]:
964
+ if input_features.shape[1:] != (
965
+ self.config.num_mel_bins,
966
+ self.config.max_source_positions * 2,
967
+ ):
968
+ raise ValueError(
969
+ "input_features.shape[1:], must be equal to (self.config.num_mel_bins,"
970
+ " self.config.max_source_positions * 2) (got"
971
+ f" {input_features.shape[1:]}, but should be"
972
+ f" ({self.config.num_mel_bins},"
973
+ f" {self.config.max_source_positions * 2}))"
974
+ )
975
+
976
+ input_features = input_features.transpose(0, 2, 1)
977
+ hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False)
978
+ hidden_states = with_sharding_constraint(hidden_states, ("batch", "embed", "num_mel"))
979
+ hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False)
980
+ hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))
981
+
982
+ embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions))
983
+ # sinusoidal positional embeddings should not be trained
984
+ embed_positions = jax.lax.stop_gradient(embed_positions)
985
+ hidden_states = hidden_states + embed_positions
986
+
987
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
988
+
989
+ outputs = self.layers(
990
+ hidden_states,
991
+ attention_mask=None,
992
+ deterministic=deterministic,
993
+ output_attentions=output_attentions,
994
+ output_hidden_states=output_hidden_states,
995
+ return_dict=return_dict,
996
+ )
997
+
998
+ last_hidden_states = outputs[0]
999
+ last_hidden_states = self.layer_norm(last_hidden_states)
1000
+
1001
+ # update the last element in `hidden_states` after applying `layernorm` above
1002
+ hidden_states = None
1003
+ if output_hidden_states:
1004
+ hidden_states = outputs[1]
1005
+ if self.use_scan:
1006
+ hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]])
1007
+ else:
1008
+ hidden_states = hidden_states[:-1] + (last_hidden_states,)
1009
+
1010
+ if not return_dict:
1011
+ outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
1012
+ return tuple(v for v in outputs if v is not None)
1013
+
1014
+ return FlaxBaseModelOutput(
1015
+ last_hidden_state=last_hidden_states,
1016
+ hidden_states=hidden_states,
1017
+ attentions=outputs.attentions,
1018
+ )
1019
+
1020
+
1021
+ class FlaxWhisperDecoder(nn.Module):
1022
+ config: WhisperConfig
1023
+ dtype: jnp.dtype = jnp.float32
1024
+ params_dtype: jnp.dtype = jnp.float32
1025
+ use_scan: bool = False
1026
+ gradient_checkpointing: bool = False
1027
+
1028
+ def setup(self) -> None:
1029
+ self.embed_tokens = Embed(
1030
+ self.config.vocab_size,
1031
+ self.config.d_model,
1032
+ dtype=self.dtype,
1033
+ params_dtype=self.params_dtype,
1034
+ )
1035
+ self.embed_positions = Embed(
1036
+ self.config.max_target_positions,
1037
+ self.config.d_model,
1038
+ dtype=self.dtype,
1039
+ params_dtype=self.params_dtype,
1040
+ )
1041
+
1042
+ self.layers = FlaxWhisperDecoderLayerCollection(
1043
+ self.config,
1044
+ dtype=self.dtype,
1045
+ params_dtype=self.params_dtype,
1046
+ use_scan=self.use_scan,
1047
+ gradient_checkpointing=self.gradient_checkpointing,
1048
+ )
1049
+
1050
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
1051
+
1052
+ self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-5, params_dtype=self.params_dtype)
1053
+
1054
+ def __call__(
1055
+ self,
1056
+ input_ids: jnp.ndarray,
1057
+ attention_mask: jnp.ndarray,
1058
+ position_ids: jnp.ndarray,
1059
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
1060
+ init_cache: bool = False,
1061
+ output_attentions: bool = False,
1062
+ output_hidden_states: bool = False,
1063
+ return_dict: bool = True,
1064
+ deterministic: bool = True,
1065
+ ) -> Tuple[jnp.ndarray]:
1066
+ input_embeds = self.embed_tokens(input_ids)
1067
+ position_embeds = self.embed_positions(position_ids)
1068
+
1069
+ hidden_states = input_embeds + position_embeds
1070
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
1071
+
1072
+ outputs = self.layers(
1073
+ hidden_states,
1074
+ attention_mask=attention_mask,
1075
+ encoder_hidden_states=encoder_hidden_states,
1076
+ deterministic=deterministic,
1077
+ init_cache=init_cache,
1078
+ output_attentions=output_attentions,
1079
+ output_hidden_states=output_hidden_states,
1080
+ return_dict=return_dict,
1081
+ )
1082
+
1083
+ last_hidden_states = outputs[0]
1084
+ last_hidden_states = self.layer_norm(last_hidden_states)
1085
+
1086
+ # update the last element in `hidden_states` after applying `layernorm` above
1087
+ hidden_states = None
1088
+ if output_hidden_states:
1089
+ hidden_states = outputs[1]
1090
+ if self.use_scan:
1091
+ hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]])
1092
+ else:
1093
+ hidden_states = hidden_states[:-1] + (last_hidden_states,)
1094
+
1095
+ if not return_dict:
1096
+ outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
1097
+ return tuple(v for v in outputs if v is not None)
1098
+
1099
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
1100
+ last_hidden_state=last_hidden_states,
1101
+ hidden_states=hidden_states,
1102
+ attentions=outputs.attentions,
1103
+ cross_attentions=outputs.cross_attentions,
1104
+ )
1105
+
1106
+
1107
+ class FlaxWhisperModule(nn.Module):
1108
+ config: WhisperConfig
1109
+ dtype: jnp.dtype = jnp.float32
1110
+ params_dtype: jnp.dtype = jnp.float32
1111
+ use_scan: bool = False
1112
+ gradient_checkpointing: bool = False
1113
+
1114
+ def setup(self) -> None:
1115
+ self.encoder = FlaxWhisperEncoder(
1116
+ self.config,
1117
+ dtype=self.dtype,
1118
+ params_dtype=self.params_dtype,
1119
+ use_scan=self.use_scan,
1120
+ gradient_checkpointing=self.gradient_checkpointing,
1121
+ )
1122
+ self.decoder = FlaxWhisperDecoder(
1123
+ self.config,
1124
+ dtype=self.dtype,
1125
+ params_dtype=self.params_dtype,
1126
+ use_scan=self.use_scan,
1127
+ gradient_checkpointing=self.gradient_checkpointing,
1128
+ )
1129
+
1130
+ def __call__(
1131
+ self,
1132
+ input_features: jnp.ndarray,
1133
+ decoder_input_ids: jnp.ndarray,
1134
+ decoder_attention_mask: jnp.ndarray,
1135
+ decoder_position_ids: jnp.ndarray,
1136
+ output_attentions: bool = False,
1137
+ output_hidden_states: bool = False,
1138
+ freeze_encoder: bool = False,
1139
+ return_dict: bool = True,
1140
+ deterministic: bool = True,
1141
+ ):
1142
+ encoder_outputs = self.encoder(
1143
+ input_features,
1144
+ output_attentions=output_attentions,
1145
+ output_hidden_states=output_hidden_states,
1146
+ return_dict=return_dict,
1147
+ deterministic=deterministic,
1148
+ )
1149
+
1150
+ encoder_hidden_states = encoder_outputs[0]
1151
+
1152
+ if freeze_encoder:
1153
+ encoder_hidden_states = jax.lax.stop_gradient(encoder_hidden_states)
1154
+
1155
+ decoder_outputs = self.decoder(
1156
+ input_ids=decoder_input_ids,
1157
+ attention_mask=decoder_attention_mask,
1158
+ position_ids=decoder_position_ids,
1159
+ encoder_hidden_states=encoder_hidden_states,
1160
+ output_attentions=output_attentions,
1161
+ output_hidden_states=output_hidden_states,
1162
+ return_dict=return_dict,
1163
+ deterministic=deterministic,
1164
+ )
1165
+
1166
+ if not return_dict:
1167
+ return decoder_outputs + encoder_outputs
1168
+
1169
+ return FlaxSeq2SeqModelOutput(
1170
+ last_hidden_state=decoder_outputs.last_hidden_state,
1171
+ decoder_hidden_states=decoder_outputs.hidden_states,
1172
+ decoder_attentions=decoder_outputs.attentions,
1173
+ cross_attentions=decoder_outputs.cross_attentions,
1174
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1175
+ encoder_hidden_states=encoder_outputs.hidden_states,
1176
+ encoder_attentions=encoder_outputs.attentions,
1177
+ )
1178
+
1179
+ def _get_encoder_module(self):
1180
+ return self.encoder
1181
+
1182
+ def _get_decoder_module(self):
1183
+ return self.decoder
1184
+
1185
+
1186
+ class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel):
1187
+ config_class = WhisperConfig
1188
+ base_model_prefix: str = "model"
1189
+ main_input_name = "input_features"
1190
+ module_class: nn.Module = None
1191
+
1192
+ def __init__(
1193
+ self,
1194
+ config: WhisperConfig,
1195
+ input_shape: Tuple[int, int, int] = None,
1196
+ seed: int = 0,
1197
+ dtype: jnp.dtype = jnp.float32,
1198
+ params_dtype: jnp.dtype = jnp.float32,
1199
+ _do_init: bool = True,
1200
+ # Can only use_scan=True in init if loading scanned weights -> need to handle use_scan=True and unrolled weights
1201
+ use_scan: bool = False,
1202
+ gradient_checkpointing: bool = False,
1203
+ **kwargs,
1204
+ ):
1205
+ self.use_scan = use_scan
1206
+ self.gradient_checkpointing = gradient_checkpointing
1207
+
1208
+ module = self.module_class(
1209
+ config=config,
1210
+ dtype=dtype,
1211
+ params_dtype=params_dtype,
1212
+ use_scan=use_scan,
1213
+ gradient_checkpointing=gradient_checkpointing,
1214
+ **kwargs,
1215
+ )
1216
+
1217
+ if input_shape is None:
1218
+ input_shape = (1, 80, 2 * config.max_source_positions)
1219
+
1220
+ super().__init__(
1221
+ config,
1222
+ module,
1223
+ input_shape=input_shape,
1224
+ seed=seed,
1225
+ dtype=dtype,
1226
+ _do_init=_do_init,
1227
+ )
1228
+
1229
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
1230
+ # init input tensors
1231
+ input_features = jnp.zeros(input_shape, dtype="f4")
1232
+ input_features = input_features.at[(..., -1)].set(self.config.eos_token_id)
1233
+
1234
+ decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4")
1235
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
1236
+
1237
+ batch_size, sequence_length = decoder_input_ids.shape
1238
+ decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
1239
+
1240
+ params_rng, dropout_rng = jax.random.split(rng)
1241
+ rngs = {"params": params_rng, "dropout": dropout_rng}
1242
+
1243
+ random_params = self.module.init(
1244
+ rngs,
1245
+ input_features=input_features,
1246
+ decoder_input_ids=decoder_input_ids,
1247
+ decoder_attention_mask=decoder_attention_mask,
1248
+ decoder_position_ids=decoder_position_ids,
1249
+ )["params"]
1250
+
1251
+ if params is not None:
1252
+ random_params = flatten_dict(unfreeze(random_params))
1253
+ params = flatten_dict(unfreeze(params))
1254
+ for missing_key in self._missing_keys:
1255
+ params[missing_key] = random_params[missing_key]
1256
+ self._missing_keys = set()
1257
+ return freeze(unflatten_dict(params))
1258
+ else:
1259
+ return random_params
1260
+
1261
+ def enable_gradient_checkpointing(self):
1262
+ self.gradient_checkpointing = True
1263
+ self._module = self.module_class(
1264
+ config=self.config,
1265
+ dtype=self.dtype,
1266
+ use_scan=self.use_scan,
1267
+ gradient_checkpointing=self.gradient_checkpointing,
1268
+ )
1269
+
1270
+ def enable_scan(self):
1271
+ self.use_scan = True
1272
+ self._module = self.module_class(
1273
+ config=self.config,
1274
+ dtype=self.dtype,
1275
+ use_scan=self.use_scan,
1276
+ gradient_checkpointing=self.gradient_checkpointing,
1277
+ )
1278
+ init_fn = partial(self.init_weights, input_shape=self.input_shape)
1279
+ params_shape_tree = jax.eval_shape(init_fn, self.key)
1280
+
1281
+ # get the shape of the parameters
1282
+ self._params_shape_tree = params_shape_tree
1283
+
1284
+ # save required_params as set
1285
+ self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())
1286
+
1287
+ # initialize the parameters
1288
+ if self._is_initialized:
1289
+ self.params = self.convert_unroll_to_scan(self.params)
1290
+
1291
+ def disable_scan(self):
1292
+ self.use_scan = False
1293
+ self._module = self.module_class(
1294
+ config=self.config,
1295
+ dtype=self.dtype,
1296
+ use_scan=self.use_scan,
1297
+ gradient_checkpointing=self.gradient_checkpointing,
1298
+ )
1299
+ init_fn = partial(self.init_weights, input_shape=self.input_shape)
1300
+ params_shape_tree = jax.eval_shape(init_fn, self.key)
1301
+
1302
+ # get the shape of the parameters
1303
+ self._params_shape_tree = params_shape_tree
1304
+
1305
+ # save required_params as set
1306
+ self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())
1307
+
1308
+ # initialize the parameters
1309
+ if self._is_initialized:
1310
+ self.params = self.convert_scan_to_unroll(self.params)
1311
+
1312
+ def convert_unroll_to_scan(self, params: Union[Dict, FrozenDict]):
1313
+ r"""
1314
+ Convert a `PyTree` of unrolled model parameters to a scanned block of model parameters. This method can be used
1315
+ to explicitly convert the model parameters to scanned format. This returns a new `params` tree and does not
1316
+ convert the `params` in place.
1317
+
1318
+ To illustrate the workings of this method, take the Flax BERT model. The unrolled structure for the query
1319
+ projection params is as follows:
1320
+ ('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn',
1321
+ 'q_proj') ... ('bert', 'encoder', 'layer', '23', 'self_attn', 'q_proj')
1322
+ This method takes each of the `q_proj` matrices for layers (0, ..., 23) and stacks them into a single 'super'
1323
+ matrix, giving a *single* block of weights for all 24 layers compatible with the scanned model:
1324
+ ('bert', 'encoder', 'layer', 'ScanLayers', 'self_attn', 'q_proj')
1325
+
1326
+ When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With
1327
+ _do_init=False, it will have to be called explicitly (see example below).
1328
+
1329
+ Arguments:
1330
+ params (`Union[Dict, FrozenDict]`):
1331
+ A `PyTree` of model parameters.
1332
+
1333
+ Examples:
1334
+
1335
+ ```python
1336
+ >>> from distil_whisper import FlaxWhisperForConditionalGeneration
1337
+
1338
+ >>> # Download model and configuration from huggingface.co
1339
+ >>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False)
1340
+ >>> # By default, the model params will be in unrolled format. To illustrate the use of this method,
1341
+ >>> # we'll first convert to scan format and then back to unrolled
1342
+ >>> model.enable_scan()
1343
+ >>> params = model.convert_unroll_to_scan(params)
1344
+ >>> # now convert back to unrolled
1345
+ >>> model.disable_scan()
1346
+ >>> params = model.convert_scan_to_unroll(params)
1347
+ ```"""
1348
+ if isinstance(params, FrozenDict):
1349
+ params = unfreeze(params)
1350
+
1351
+ params = flatten_dict(params, sep="/")
1352
+ keys = list(params.keys())
1353
+
1354
+ for k in keys:
1355
+ # Identify all "unrolled" layers formed as part of the FlaxBertLayerCollection
1356
+ # These params contain the identifier `layer` in their key
1357
+ if "layers/0" in k:
1358
+ if "decoder" in k:
1359
+ block_prefix = "Decoder"
1360
+ num_hidden_layers = self.config.decoder_layers
1361
+ else:
1362
+ block_prefix = "Encoder"
1363
+ num_hidden_layers = self.config.encoder_layers
1364
+
1365
+ # Squash the keys for the N unrolled layers into one single key:
1366
+ # (layer/0, ..., layer/N) -> layer/FlaxScanLayers
1367
+ scan_key = k.replace("0", f"Flax{block_prefix}ScanLayers")
1368
+ stacked_params = []
1369
+
1370
+ # Iterate over the unrolled layers (1,...,N)
1371
+ for i in range(num_hidden_layers):
1372
+ # Stack the params for the N layers into one super block
1373
+ # and remove the unrolled layer params on the fly
1374
+ # -> no memory overhead for conversion!
1375
+ unrolled_layer = params.pop(k.replace("0", str(i)))
1376
+ stacked_params.append(unrolled_layer)
1377
+
1378
+ params[scan_key] = jnp.stack(stacked_params)
1379
+
1380
+ # Finally, unflatten the dict to restore the nested pytree structure
1381
+ params = unflatten_dict(params, sep="/")
1382
+ return params
1383
+
1384
+ def convert_scan_to_unroll(self, params: Union[Dict, FrozenDict]):
1385
+ r"""
1386
+ Convert a `PyTree` of scanned model parameters to an unrolled stack of model parameters. This method can be
1387
+ used to explicitly convert the model parameters to unrolled format. This returns a new `params` tree and does
1388
+ not convert the `params` in place.
1389
+
1390
+ To illustrate the workings of this method, take the Flax BERT model. The scanned structure for the query
1391
+ projection (`q_proj`) params is a single, stacked matrix of parameters over all N layers:
1392
+ ('bert', 'encoder', 'layer', 'FlaxScanLayers', 'self_attn', 'q_proj')
1393
+
1394
+ This method slices each layer of the `q_proj` scanned matrix into single, standalone layers, and replaces the
1395
+ scanned matrix of parameteres on the fly:
1396
+ ('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn',
1397
+ 'q_proj') ... ('bert', 'encoder', 'layer', 'N', 'self_attn', 'q_proj')
1398
+
1399
+ When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With
1400
+ _do_init=False, it will have to be called explicitly (see example below).
1401
+
1402
+ Arguments:
1403
+ params (`Union[Dict, FrozenDict]`):
1404
+ A `PyTree` of model parameters.
1405
+
1406
+ Examples:
1407
+
1408
+ ```python
1409
+ >>> from distil_whisper import FlaxWhisperForConditionalGeneration
1410
+
1411
+ >>> # Download model and configuration from huggingface.co
1412
+ >>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False)
1413
+ >>> # By default, the model params will be in unrolled format. To illustrate the use of this method,
1414
+ >>> # we'll first convert to scan format and then back to unrolled
1415
+ >>> model.enable_scan()
1416
+ >>> params = model.convert_unroll_to_scan(params)
1417
+ >>> # now convert back to unrolled
1418
+ >>> model.disable_scan()
1419
+ >>> params = model.convert_scan_to_unroll(params)
1420
+ ```"""
1421
+
1422
+ if isinstance(params, FrozenDict):
1423
+ params = unfreeze(params)
1424
+
1425
+ params = flatten_dict(params, sep="/")
1426
+ keys = list(params.keys())
1427
+
1428
+ for k in keys:
1429
+ # Identify all "scan" layers formed as part of the FlaxBertLayerCollection
1430
+ # These params contain the identifier `FlaxScanLayers` in their key
1431
+ if "FlaxEncoderScanLayers" in k:
1432
+ # Remove the scan layer from the PyTree of params
1433
+ scan_layer = params.pop(k)
1434
+
1435
+ # Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number
1436
+ # layer/FlaxScanLayers -> (layer/0, ..., layer/N)
1437
+ for i in range(self.config.encoder_layers):
1438
+ # Unstack the params for the i-th scan layer to unrolled
1439
+ # and remove corresponding scan params on the fly
1440
+ # -> no memory overhead for conversion!
1441
+ unrolled_key = k.replace("FlaxEncoderScanLayers", str(i))
1442
+ params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:]
1443
+
1444
+ elif "FlaxDecoderScanLayers" in k:
1445
+ # Remove the scan layer from the PyTree of params
1446
+ scan_layer = params.pop(k)
1447
+
1448
+ # Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number
1449
+ # layer/FlaxScanLayers -> (layer/0, ..., layer/N)
1450
+ for i in range(self.config.decoder_layers):
1451
+ # Unstack the params for the i-th scan layer to unrolled
1452
+ # and remove corresponding scan params on the fly
1453
+ # -> no memory overhead for conversion!
1454
+ unrolled_key = k.replace("FlaxDecoderScanLayers", str(i))
1455
+ params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:]
1456
+
1457
+ params = unflatten_dict(params, sep="/")
1458
+ return params
1459
+
1460
+ # Copied from transformers.models.whisper.modeling_flax_whisper.FlaxWhisperPreTrainedModel.init_cache
1461
+ def init_cache(self, batch_size, max_length, encoder_outputs):
1462
+ r"""
1463
+ Args:
1464
+ batch_size (`int`):
1465
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
1466
+ max_length (`int`):
1467
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
1468
+ cache.
1469
+ encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
1470
+ `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
1471
+ `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
1472
+ is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
1473
+ cross-attention of the decoder.
1474
+ """
1475
+ # init input variables to retrieve cache
1476
+ decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
1477
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
1478
+ decoder_position_ids = jnp.broadcast_to(
1479
+ jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
1480
+ decoder_input_ids.shape,
1481
+ )
1482
+
1483
+ def _decoder_forward(
1484
+ module,
1485
+ decoder_input_ids,
1486
+ decoder_attention_mask,
1487
+ decoder_position_ids,
1488
+ **kwargs,
1489
+ ):
1490
+ decoder_module = module._get_decoder_module()
1491
+ return decoder_module(
1492
+ decoder_input_ids,
1493
+ decoder_attention_mask,
1494
+ decoder_position_ids,
1495
+ **kwargs,
1496
+ )
1497
+
1498
+ init_variables = self.module.init(
1499
+ jax.random.PRNGKey(0),
1500
+ decoder_input_ids=decoder_input_ids,
1501
+ decoder_attention_mask=decoder_attention_mask,
1502
+ decoder_position_ids=decoder_position_ids,
1503
+ encoder_hidden_states=encoder_outputs[0],
1504
+ init_cache=True,
1505
+ method=_decoder_forward, # we only need to call the decoder to init the cache
1506
+ )
1507
+ return unfreeze(init_variables["cache"])
1508
+
1509
+ @add_start_docstrings(WHISPER_ENCODE_INPUTS_DOCSTRING)
1510
+ @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=WhisperConfig)
1511
+ def encode(
1512
+ self,
1513
+ input_features: jnp.ndarray,
1514
+ attention_mask: Optional[jnp.ndarray] = None,
1515
+ output_attentions: Optional[bool] = None,
1516
+ output_hidden_states: Optional[bool] = None,
1517
+ return_dict: Optional[bool] = None,
1518
+ train: bool = False,
1519
+ params: dict = None,
1520
+ dropout_rng: PRNGKey = None,
1521
+ **kwargs,
1522
+ ):
1523
+ r"""
1524
+ Returns:
1525
+
1526
+ Example:
1527
+
1528
+ ```python
1529
+ >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
1530
+ >>> from datasets import load_dataset
1531
+
1532
+ >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
1533
+ >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
1534
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1535
+ >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
1536
+ >>> input_features = inputs.input_features
1537
+ >>> encoder_outputs = model.encode(input_features=input_features)
1538
+ ```"""
1539
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1540
+ output_hidden_states = (
1541
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1542
+ )
1543
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1544
+
1545
+ # Handle any PRNG if needed
1546
+ rngs = {}
1547
+ if dropout_rng is not None:
1548
+ rngs["dropout"] = dropout_rng
1549
+
1550
+ def _encoder_forward(module, input_features, **kwargs):
1551
+ encode_module = module._get_encoder_module()
1552
+ return encode_module(input_features, **kwargs)
1553
+
1554
+ return self.module.apply(
1555
+ {"params": params or self.params},
1556
+ input_features=jnp.array(input_features, dtype="f4"),
1557
+ output_attentions=output_attentions,
1558
+ output_hidden_states=output_hidden_states,
1559
+ return_dict=return_dict,
1560
+ deterministic=not train,
1561
+ rngs=rngs,
1562
+ method=_encoder_forward,
1563
+ )
1564
+
1565
+ @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING)
1566
+ @replace_return_docstrings(
1567
+ output_type=FlaxBaseModelOutputWithPastAndCrossAttentions,
1568
+ config_class=WhisperConfig,
1569
+ )
1570
+ def decode(
1571
+ self,
1572
+ decoder_input_ids,
1573
+ encoder_outputs,
1574
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1575
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1576
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1577
+ past_key_values: dict = None,
1578
+ output_attentions: Optional[bool] = None,
1579
+ output_hidden_states: Optional[bool] = None,
1580
+ return_dict: Optional[bool] = None,
1581
+ train: bool = False,
1582
+ params: dict = None,
1583
+ dropout_rng: PRNGKey = None,
1584
+ ):
1585
+ r"""
1586
+ Returns:
1587
+
1588
+ Example:
1589
+
1590
+ ```python
1591
+ >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
1592
+ >>> from datasets import load_dataset
1593
+
1594
+ >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
1595
+ >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
1596
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1597
+ >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
1598
+ >>> input_features = inputs.input_features
1599
+ >>> encoder_outputs = model.encode(input_features=input_features)
1600
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
1601
+
1602
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
1603
+
1604
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
1605
+ >>> last_decoder_hidden_states = outputs.last_hidden_state
1606
+ ```"""
1607
+
1608
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1609
+ output_hidden_states = (
1610
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1611
+ )
1612
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1613
+
1614
+ encoder_hidden_states = encoder_outputs[0]
1615
+
1616
+ batch_size, sequence_length = decoder_input_ids.shape
1617
+ if decoder_position_ids is None:
1618
+ if past_key_values is not None:
1619
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing" " `past_key_values`.")
1620
+
1621
+ if decoder_attention_mask is not None:
1622
+ decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
1623
+ else:
1624
+ decoder_position_ids = jnp.broadcast_to(
1625
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1626
+ )
1627
+
1628
+ if decoder_attention_mask is None:
1629
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
1630
+
1631
+ # Handle any PRNG if needed
1632
+ rngs = {}
1633
+ if dropout_rng is not None:
1634
+ rngs["dropout"] = dropout_rng
1635
+
1636
+ inputs = {"params": params or self.params}
1637
+
1638
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
1639
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
1640
+ # it can be changed by FlaxWhisperAttention module
1641
+ if past_key_values:
1642
+ inputs["cache"] = past_key_values
1643
+ mutable = ["cache"]
1644
+ else:
1645
+ mutable = False
1646
+
1647
+ def _decoder_forward(
1648
+ module,
1649
+ decoder_input_ids,
1650
+ decoder_attention_mask,
1651
+ decoder_position_ids,
1652
+ **kwargs,
1653
+ ):
1654
+ decoder_module = module._get_decoder_module()
1655
+ return decoder_module(
1656
+ input_ids=decoder_input_ids,
1657
+ attention_mask=decoder_attention_mask,
1658
+ position_ids=decoder_position_ids,
1659
+ **kwargs,
1660
+ )
1661
+
1662
+ outputs = self.module.apply(
1663
+ inputs,
1664
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1665
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1666
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1667
+ encoder_hidden_states=encoder_hidden_states,
1668
+ output_attentions=output_attentions,
1669
+ output_hidden_states=output_hidden_states,
1670
+ return_dict=return_dict,
1671
+ deterministic=not train,
1672
+ rngs=rngs,
1673
+ mutable=mutable,
1674
+ method=_decoder_forward,
1675
+ )
1676
+
1677
+ # add updated cache to model output
1678
+ if past_key_values is not None and return_dict:
1679
+ outputs, past = outputs
1680
+ outputs["past_key_values"] = unfreeze(past["cache"])
1681
+ return outputs
1682
+ elif past_key_values is not None and not return_dict:
1683
+ outputs, past = outputs
1684
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
1685
+
1686
+ return outputs
1687
+
1688
+ @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
1689
+ def __call__(
1690
+ self,
1691
+ input_features: jnp.ndarray,
1692
+ decoder_input_ids: jnp.ndarray,
1693
+ attention_mask: Optional[jnp.ndarray] = None,
1694
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1695
+ position_ids: Optional[jnp.ndarray] = None,
1696
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1697
+ output_attentions: Optional[bool] = None,
1698
+ output_hidden_states: Optional[bool] = None,
1699
+ freeze_encoder: Optional[bool] = None,
1700
+ return_dict: Optional[bool] = None,
1701
+ train: bool = False,
1702
+ params: dict = None,
1703
+ dropout_rng: PRNGKey = None,
1704
+ ):
1705
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1706
+ output_hidden_states = (
1707
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1708
+ )
1709
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1710
+
1711
+ # prepare decoder inputs
1712
+ if decoder_position_ids is None:
1713
+ if decoder_attention_mask is not None:
1714
+ decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
1715
+ else:
1716
+ batch_size, sequence_length = decoder_input_ids.shape
1717
+ decoder_position_ids = jnp.broadcast_to(
1718
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1719
+ )
1720
+ if decoder_attention_mask is None:
1721
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
1722
+
1723
+ # Handle any PRNG if needed
1724
+ rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
1725
+
1726
+ return self.module.apply(
1727
+ {"params": params or self.params},
1728
+ input_features=jnp.array(input_features, dtype="f4"),
1729
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1730
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1731
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1732
+ output_attentions=output_attentions,
1733
+ output_hidden_states=output_hidden_states,
1734
+ freeze_encoder=freeze_encoder,
1735
+ return_dict=return_dict,
1736
+ deterministic=not train,
1737
+ rngs=rngs,
1738
+ )
1739
+
1740
+
1741
+ @add_start_docstrings(
1742
+ ("The bare Whisper Model transformer outputting raw hidden-states without any" " specific head on top."),
1743
+ WHISPER_START_DOCSTRING,
1744
+ )
1745
+ class FlaxWhisperModel(FlaxWhisperPreTrainedModel):
1746
+ config: WhisperConfig
1747
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
1748
+ params_dtype: jnp.dtype = jnp.float32
1749
+ module_class = FlaxWhisperModule
1750
+
1751
+
1752
+ append_call_sample_docstring(FlaxWhisperModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
1753
+
1754
+
1755
+ class FlaxWhisperForConditionalGenerationModule(nn.Module):
1756
+ config: WhisperConfig
1757
+ dtype: jnp.dtype = jnp.float32
1758
+ params_dtype: jnp.dtype = jnp.float32
1759
+ use_scan: bool = False
1760
+ gradient_checkpointing: bool = False
1761
+
1762
+ def setup(self) -> None:
1763
+ self.model = FlaxWhisperModule(
1764
+ config=self.config,
1765
+ dtype=self.dtype,
1766
+ params_dtype=self.params_dtype,
1767
+ use_scan=self.use_scan,
1768
+ gradient_checkpointing=self.gradient_checkpointing,
1769
+ )
1770
+ self.lm_head = DenseGeneral(
1771
+ self.config.vocab_size,
1772
+ use_bias=False,
1773
+ dtype=self.dtype,
1774
+ params_dtype=self.params_dtype,
1775
+ kernel_axes=("embed", "vocab"),
1776
+ )
1777
+
1778
+ def _get_encoder_module(self):
1779
+ return self.model.encoder
1780
+
1781
+ def _get_decoder_module(self):
1782
+ return self.model.decoder
1783
+
1784
+ def __call__(
1785
+ self,
1786
+ input_features,
1787
+ decoder_input_ids,
1788
+ decoder_attention_mask: jnp.ndarray = None,
1789
+ decoder_position_ids: jnp.ndarray = None,
1790
+ position_ids: jnp.ndarray = None,
1791
+ attention_mask: jnp.ndarray = None,
1792
+ output_attentions: bool = False,
1793
+ output_hidden_states: bool = False,
1794
+ freeze_encoder: bool = False,
1795
+ return_dict: bool = True,
1796
+ deterministic: bool = True,
1797
+ ):
1798
+ outputs = self.model(
1799
+ input_features=input_features,
1800
+ decoder_input_ids=decoder_input_ids,
1801
+ decoder_attention_mask=decoder_attention_mask,
1802
+ decoder_position_ids=decoder_position_ids,
1803
+ output_attentions=output_attentions,
1804
+ output_hidden_states=output_hidden_states,
1805
+ freeze_encoder=freeze_encoder,
1806
+ return_dict=return_dict,
1807
+ deterministic=deterministic,
1808
+ )
1809
+
1810
+ hidden_states = outputs[0]
1811
+
1812
+ if self.config.tie_word_embeddings:
1813
+ shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"]
1814
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
1815
+ else:
1816
+ lm_logits = self.lm_head(hidden_states)
1817
+
1818
+ if not return_dict:
1819
+ output = (lm_logits,) + outputs[1:]
1820
+ return output
1821
+
1822
+ return FlaxSeq2SeqLMOutput(
1823
+ logits=lm_logits,
1824
+ decoder_hidden_states=outputs.decoder_hidden_states,
1825
+ decoder_attentions=outputs.decoder_attentions,
1826
+ cross_attentions=outputs.cross_attentions,
1827
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1828
+ encoder_hidden_states=outputs.encoder_hidden_states,
1829
+ encoder_attentions=outputs.encoder_attentions,
1830
+ )
1831
+
1832
+
1833
+ @add_start_docstrings("The Whisper Model with a language modeling head.", WHISPER_START_DOCSTRING)
1834
+ class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel):
1835
+ module_class = FlaxWhisperForConditionalGenerationModule
1836
+
1837
+ @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING)
1838
+ @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=WhisperConfig)
1839
+ def decode(
1840
+ self,
1841
+ decoder_input_ids,
1842
+ encoder_outputs,
1843
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1844
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1845
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1846
+ past_key_values: dict = None,
1847
+ output_attentions: Optional[bool] = None,
1848
+ output_hidden_states: Optional[bool] = None,
1849
+ return_dict: Optional[bool] = None,
1850
+ train: bool = False,
1851
+ params: dict = None,
1852
+ dropout_rng: PRNGKey = None,
1853
+ ):
1854
+ r"""
1855
+ Returns:
1856
+
1857
+ Example:
1858
+
1859
+ ```python
1860
+ >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
1861
+ >>> from datasets import load_dataset
1862
+
1863
+ >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
1864
+ >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
1865
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1866
+ >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
1867
+ >>> input_features = inputs.input_features
1868
+ >>> encoder_outputs = model.encode(input_features=input_features)
1869
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
1870
+
1871
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
1872
+
1873
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
1874
+ >>> last_decoder_hidden_states = outputs.last_hidden_state
1875
+ ```"""
1876
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1877
+ output_hidden_states = (
1878
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1879
+ )
1880
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1881
+
1882
+ encoder_hidden_states = encoder_outputs[0]
1883
+
1884
+ batch_size, sequence_length = decoder_input_ids.shape
1885
+ if decoder_position_ids is None:
1886
+ if past_key_values is not None:
1887
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing" " `past_key_values`.")
1888
+
1889
+ if decoder_attention_mask is not None:
1890
+ decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
1891
+ else:
1892
+ decoder_position_ids = jnp.broadcast_to(
1893
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1894
+ )
1895
+ if decoder_attention_mask is None:
1896
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4")
1897
+
1898
+ # Handle any PRNG if needed
1899
+ rngs = {}
1900
+ if dropout_rng is not None:
1901
+ rngs["dropout"] = dropout_rng
1902
+
1903
+ inputs = {"params": params or self.params}
1904
+
1905
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
1906
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
1907
+ # it can be changed by FlaxWhisperAttention module
1908
+ if past_key_values:
1909
+ inputs["cache"] = past_key_values
1910
+ mutable = ["cache"]
1911
+ else:
1912
+ mutable = False
1913
+
1914
+ def _decoder_forward(
1915
+ module,
1916
+ decoder_input_ids,
1917
+ decoder_attention_mask,
1918
+ decoder_position_ids,
1919
+ **kwargs,
1920
+ ):
1921
+ decoder_module = module._get_decoder_module()
1922
+ outputs = decoder_module(
1923
+ input_ids=decoder_input_ids,
1924
+ attention_mask=decoder_attention_mask,
1925
+ position_ids=decoder_position_ids,
1926
+ **kwargs,
1927
+ )
1928
+ hidden_states = outputs[0]
1929
+
1930
+ if self.config.tie_word_embeddings:
1931
+ shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"]
1932
+ lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
1933
+ else:
1934
+ lm_logits = module.lm_head(hidden_states)
1935
+
1936
+ return lm_logits, outputs
1937
+
1938
+ outputs = self.module.apply(
1939
+ inputs,
1940
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1941
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1942
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1943
+ encoder_hidden_states=encoder_hidden_states,
1944
+ output_attentions=output_attentions,
1945
+ output_hidden_states=output_hidden_states,
1946
+ return_dict=return_dict,
1947
+ deterministic=not train,
1948
+ rngs=rngs,
1949
+ mutable=mutable,
1950
+ method=_decoder_forward,
1951
+ )
1952
+
1953
+ if past_key_values is None:
1954
+ lm_logits, decoder_outputs = outputs
1955
+ else:
1956
+ (lm_logits, decoder_outputs), past = outputs
1957
+
1958
+ if return_dict:
1959
+ outputs = FlaxCausalLMOutputWithCrossAttentions(
1960
+ logits=lm_logits,
1961
+ hidden_states=decoder_outputs.hidden_states,
1962
+ attentions=decoder_outputs.attentions,
1963
+ cross_attentions=decoder_outputs.cross_attentions,
1964
+ )
1965
+ else:
1966
+ outputs = (lm_logits,) + decoder_outputs[1:]
1967
+
1968
+ # add updated cache to model output
1969
+ if past_key_values is not None and return_dict:
1970
+ outputs["past_key_values"] = unfreeze(past["cache"])
1971
+ return outputs
1972
+ elif past_key_values is not None and not return_dict:
1973
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
1974
+
1975
+ return outputs
1976
+
1977
+ def generate(
1978
+ self,
1979
+ input_features,
1980
+ generation_config=None,
1981
+ logits_processor=None,
1982
+ return_timestamps=None,
1983
+ task=None,
1984
+ language=None,
1985
+ is_multilingual=None,
1986
+ **kwargs,
1987
+ ):
1988
+ if generation_config is None:
1989
+ generation_config = self.generation_config
1990
+
1991
+ if return_timestamps is not None:
1992
+ generation_config.return_timestamps = return_timestamps
1993
+
1994
+ if task is not None:
1995
+ generation_config.task = task
1996
+
1997
+ if is_multilingual is not None:
1998
+ generation_config.is_multilingual = is_multilingual
1999
+
2000
+ if language is not None:
2001
+ generation_config.language = language
2002
+
2003
+ if kwargs is not None and "decoder_input_ids" in kwargs:
2004
+ decoder_input_length = len(kwargs["decoder_input_ids"])
2005
+ else:
2006
+ decoder_input_length = 1
2007
+
2008
+ forced_decoder_ids = []
2009
+
2010
+ if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual:
2011
+ if hasattr(generation_config, "language"):
2012
+ forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language]))
2013
+ else:
2014
+ forced_decoder_ids.append((1, None))
2015
+
2016
+ if hasattr(generation_config, "task"):
2017
+ forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task]))
2018
+ else:
2019
+ forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"]))
2020
+
2021
+ if (
2022
+ hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps
2023
+ ) or return_timestamps:
2024
+ logits_processor = [
2025
+ FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length)
2026
+ ]
2027
+ else:
2028
+ if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id:
2029
+ idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1
2030
+ forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id))
2031
+
2032
+ if len(forced_decoder_ids) > 0:
2033
+ generation_config.forced_decoder_ids = forced_decoder_ids
2034
+
2035
+ return super().generate(
2036
+ input_features,
2037
+ generation_config,
2038
+ logits_processor=logits_processor,
2039
+ **kwargs,
2040
+ )
2041
+
2042
+ def pipeline_generate(
2043
+ self,
2044
+ input_features,
2045
+ forced_decoder_ids,
2046
+ return_timestamps=False,
2047
+ generation_config=None,
2048
+ **kwargs,
2049
+ ):
2050
+ if generation_config is None:
2051
+ generation_config = self.generation_config
2052
+
2053
+ # override the generation config forced decoder ids in preference of the ones we have set
2054
+ generation_config.forced_decoder_ids = None
2055
+
2056
+ logits_processor = FlaxLogitsProcessorList()
2057
+
2058
+ logits_processor.append(FlaxStaticForceTokensLogitsProcessor(forced_decoder_ids))
2059
+
2060
+ if hasattr(generation_config, "return_timestamps") and return_timestamps:
2061
+ logits_processor.append(FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, 1))
2062
+
2063
+ return super().generate(
2064
+ input_features,
2065
+ generation_config,
2066
+ logits_processor=logits_processor,
2067
+ **kwargs,
2068
+ )
2069
+
2070
+ def prepare_inputs_for_generation(
2071
+ self,
2072
+ decoder_input_ids,
2073
+ max_length,
2074
+ attention_mask: Optional[jax.Array] = None,
2075
+ decoder_attention_mask: Optional[jax.Array] = None,
2076
+ encoder_outputs=None,
2077
+ **kwargs,
2078
+ ):
2079
+ # initializing the cache
2080
+ batch_size, seq_length = decoder_input_ids.shape
2081
+
2082
+ past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
2083
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
2084
+ # But since the decoder uses a causal mask, those positions are masked anyways.
2085
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
2086
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
2087
+ if decoder_attention_mask is not None:
2088
+ position_ids = decoder_attention_mask.cumsum(-1) - 1
2089
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
2090
+ else:
2091
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
2092
+
2093
+ return {
2094
+ "past_key_values": past_key_values,
2095
+ "encoder_outputs": encoder_outputs,
2096
+ "encoder_attention_mask": attention_mask,
2097
+ "decoder_attention_mask": extended_attention_mask,
2098
+ "decoder_position_ids": position_ids,
2099
+ }
2100
+
2101
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
2102
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
2103
+ model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
2104
+ return model_kwargs
2105
+
2106
+
2107
+ FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r"""
2108
+ Returns:
2109
+
2110
+ Transcription example:
2111
+
2112
+ ```python
2113
+ >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
2114
+ >>> from datasets import load_dataset
2115
+
2116
+ >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
2117
+ >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
2118
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
2119
+ >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
2120
+ >>> input_features = inputs.input_features
2121
+ >>> generated_ids = model.generate(input_ids=input_features)
2122
+ >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
2123
+ >>> transcription
2124
+ ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
2125
+ ```
2126
+ """
2127
+
2128
+ overwrite_call_docstring(
2129
+ FlaxWhisperForConditionalGeneration,
2130
+ WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING,
2131
+ )
2132
+ append_replace_return_docstrings(
2133
+ FlaxWhisperForConditionalGeneration,
2134
+ output_type=FlaxSeq2SeqLMOutput,
2135
+ config_class=_CONFIG_FOR_DOC,
2136
+ )
distil_whisper/partitioner.py ADDED
@@ -0,0 +1,965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The T5X Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Utilities for partitioning."""
16
+
17
+ import abc
18
+ import collections
19
+ import dataclasses
20
+ import typing
21
+ from typing import Any, Callable, Optional, Sequence, Tuple, Union
22
+
23
+ import cached_property
24
+ import jax
25
+ import numpy as np
26
+ from absl import logging
27
+ from flax import traverse_util
28
+ from flax.linen import partitioning as flax_partitioning
29
+ from jax import numpy as jnp
30
+ from jax import random
31
+ from jax.experimental import multihost_utils
32
+ from jax.experimental.mesh_utils import create_hybrid_device_mesh
33
+ from jax.experimental.pjit import pjit as jax_pjit
34
+ from jax.sharding import Mesh, PartitionSpec
35
+
36
+
37
+ JaxDevice = Any
38
+ TpuMesh = Tuple[int, int, int, int] # (x, y, z, num_cores).
39
+ OtherMesh = Tuple[int, int]
40
+ HardwareMesh = Union[TpuMesh, OtherMesh]
41
+ PyTreeDef = type(jax.tree_util.tree_structure(None))
42
+ TrainState = Any
43
+ LogicalAxisRules = Sequence[Tuple[str, Optional[str]]]
44
+
45
+ if typing.TYPE_CHECKING: # See b/163639353
46
+ cached_property = property # pylint: disable=invalid-name
47
+ else:
48
+ cached_property = cached_property.cached_property
49
+
50
+
51
+ class AxisNames(tuple):
52
+ """Tuple of strings specifying name for each axis.
53
+
54
+ We create a separate class for this so JAX's pytree utilities can distinguish
55
+ it from a tuple that should be treated as a pytree, instead treating it as a
56
+ leaf.
57
+ """
58
+
59
+ def __new__(cls, *names):
60
+ return tuple.__new__(AxisNames, names)
61
+
62
+ def __repr__(self):
63
+ return "AxisNames%s" % tuple.__repr__(self)
64
+
65
+
66
+ # pjit wrappers for cpu fallback.
67
+ # ----------------------------------------------------------------------------
68
+ # TODO(levskaya): This function is now no different than jax_pjit, but callers
69
+ # currently depend on `backend` argument
70
+ def pjit(
71
+ fun: Callable, # pylint: disable=g-bare-generic
72
+ in_axis_resources,
73
+ out_axis_resources,
74
+ static_argnums: Union[int, Sequence[int]] = (),
75
+ donate_argnums: Union[int, Sequence[int]] = (),
76
+ backend: Optional[str] = None,
77
+ ):
78
+ """Wrapper for pjit."""
79
+ del backend
80
+ return jax_pjit(
81
+ fun,
82
+ in_axis_resources,
83
+ out_axis_resources,
84
+ static_argnums=static_argnums,
85
+ donate_argnums=donate_argnums,
86
+ )
87
+
88
+
89
+ # pjit wrappers for cpu fallback.
90
+ # -----------------------------------------------------------------------------
91
+ # TODO(levskaya): upstream this fallback behavior to jax pjit.
92
+ def pjit_with_cpu_fallback(
93
+ fun: Callable, # pylint: disable=g-bare-generic
94
+ in_axis_resources,
95
+ out_axis_resources,
96
+ static_argnums: Union[int, Sequence[int]] = (),
97
+ donate_argnums: Union[int, Sequence[int]] = (),
98
+ backend: Optional[str] = None,
99
+ ):
100
+ """Wrapper for pjit that calls normal jit on cpu."""
101
+ if jax.devices(backend)[0].platform == "cpu":
102
+ return jax.jit(fun, static_argnums=static_argnums, donate_argnums=donate_argnums)
103
+ else:
104
+ return jax_pjit(
105
+ fun,
106
+ in_axis_resources,
107
+ out_axis_resources,
108
+ static_argnums=static_argnums,
109
+ donate_argnums=donate_argnums,
110
+ )
111
+
112
+
113
+ def with_sharding_constraint(x, axis_resources):
114
+ """Wrapper for pjit with_sharding_constraint, no-op on cpu or outside pjit."""
115
+ if jax.devices()[0].platform == "cpu" or not global_mesh_defined():
116
+ return x
117
+ else:
118
+ return jax.experimental.pjit.with_sharding_constraint(x, axis_resources)
119
+
120
+
121
+ # pjit Mesh creation functions.
122
+ # -----------------------------------------------------------------------------
123
+ def bounds_from_last_device(last_device: JaxDevice) -> HardwareMesh:
124
+ """Get the bound from the given last device."""
125
+ # Must be passed the device at the highest-coordinate corner of the
126
+ # relevant mesh, which is a requirement we know is satisfied by the last
127
+ # device in jax.devices().
128
+ if hasattr(last_device, "coords"):
129
+ x, y, z = last_device.coords
130
+ return x + 1, y + 1, z + 1, last_device.core_on_chip + 1
131
+ else:
132
+ # On non-TPU platforms, the "mesh" is hosts x devices per host in order
133
+ # to take advantage of faster within-host interconnect.
134
+ return jax.host_count(), jax.local_device_count()
135
+
136
+
137
+ def get_coords(device: JaxDevice) -> HardwareMesh:
138
+ """Returns the coordinates of the given device."""
139
+ if hasattr(device, "coords"):
140
+ return (*device.coords, device.core_on_chip)
141
+ return (device.process_index, device.id % jax.local_device_count())
142
+
143
+
144
+ def global_mesh_defined():
145
+ """Checks if global xmap/pjit mesh resource environment is defined."""
146
+ maps_env = jax.experimental.maps.thread_resources.env
147
+ return maps_env.physical_mesh.devices.shape != () # pylint: disable=g-explicit-bool-comparison
148
+
149
+
150
+ def get_mesh(
151
+ model_parallel_submesh: HardwareMesh,
152
+ input_devices: Sequence[JaxDevice] = (),
153
+ input_local_devices: Sequence[JaxDevice] = (),
154
+ tile_by_host_if_needed: bool = True,
155
+ backend: Optional[str] = None,
156
+ ) -> Mesh:
157
+ """Construct an xmap/pjit Mesh for the given model-parallel submesh.
158
+
159
+ The resulting mesh has two resource axes: 'model', with the provided submesh
160
+ shape, and 'data', which covers the rest of the mesh.
161
+
162
+ Args:
163
+ model_parallel_submesh: a HardwareMesh spec, namely (x,y,z,core) on TPU for
164
+ a single model-parallel replica's "tile" in the physical device mesh. The
165
+ first three elements (`x`, `y`, and `z`) should be factors of the pod
166
+ slice; e.g., if you are using df_4x8, then `x` should be a factor of 4
167
+ (one of 1, 2, 4), `y` should be a factor of 8 (one of 1, 2, 4, 8), and `z`
168
+ must be 1, because TPU v3 slices are only 2D. `z` can be >1 for TPU v4
169
+ (and maybe later TPUs) that allow 3D slices. `core` is the number of cores
170
+ to use from each TPU node. As communication is usually fastest inside the
171
+ same node, if you need a tile of more than 1 core, then
172
+ you should first increase `core`: e.g., for TPU v3, (1,1,1,2) is better
173
+ than (2,1,1,1). To pick a good spec, try a few possible values until you
174
+ get high TPU utilization.
175
+ input_devices: the devices to use, will use jax.devices() if this is not
176
+ set.
177
+ input_local_devices: the local devices to use, will use jax.local_devices()
178
+ if this is not set.
179
+ tile_by_host_if_needed: JAX currently requires that the parts of any sharded
180
+ array that are located on one host's local devices form a single
181
+ contiguous slice. A best effort will be made to achieve this without
182
+ "tiling" the device assignment over hosts (which can reduce XLA collective
183
+ performance). If this flag is True, then the device assignment will be
184
+ tiled over hosts if necessary to satisfy this constraint and create a
185
+ buildable mesh; if false, mesh construction will fail instead.
186
+ backend: get devices from the pinned backend, if specified. This is
187
+ useful for explicitly specifying the devices other than relying on
188
+ jax_platform_name.
189
+
190
+ Returns:
191
+ A xmap / pjit Mesh containing the virtual device mesh with data, model axes.
192
+ """
193
+ input_devices = input_devices or jax.devices(backend)
194
+ input_local_devices = input_local_devices or jax.local_devices(0, backend)
195
+ # Sort input_devices based on coords, as backends might not return devices
196
+ # in order.
197
+ last_device = sorted(input_devices, key=get_coords)[-1]
198
+ last_input_local_devices = sorted(input_local_devices, key=get_coords)[-1]
199
+ logging.info(
200
+ "last device coords : %r\nlast local device coords: %r",
201
+ get_coords(last_device),
202
+ get_coords(last_input_local_devices),
203
+ )
204
+ global_hardware_mesh = bounds_from_last_device(last_device)
205
+ mesh_ndim = len(global_hardware_mesh)
206
+ local_hardware_mesh = bounds_from_last_device(last_input_local_devices)
207
+ mesh_err = (
208
+ f"each dimension of the model parallel submesh {model_parallel_submesh} "
209
+ "must be a factor of the corresponding dimension of the global device "
210
+ f"mesh {global_hardware_mesh}"
211
+ )
212
+ assert not any(g % m for g, m in zip(global_hardware_mesh, model_parallel_submesh)), mesh_err
213
+ assert not any(g % l for g, l in zip(global_hardware_mesh, local_hardware_mesh))
214
+ devices = np.empty(global_hardware_mesh, dtype=object)
215
+ for device in input_devices:
216
+ device_coords = get_coords(device)
217
+ devices[device_coords] = device
218
+ tile_by_host = tile_by_host_if_needed
219
+ if len(global_hardware_mesh) == 4:
220
+ # enable contiguous local chunks without host tiling by making Z major
221
+ global_hardware_mesh = typing.cast(Tuple[int, int, int, int], global_hardware_mesh)
222
+ model_parallel_submesh = typing.cast(Tuple[int, int, int, int], model_parallel_submesh)
223
+ gx, gy, gz, gc = global_hardware_mesh
224
+ mx, my, mz, mc = model_parallel_submesh
225
+ if (mx == gx > 1 and my == mz == 1) or (mx == 1 and my == gy > 1 and mz == gz > 1):
226
+ logging.info("ensuring YZ plane has a Z-major device order")
227
+ # YZ should be ZY
228
+ assert mc == gc, (mc, gc)
229
+ global_hardware_mesh = gx, gz, gy, gc
230
+ model_parallel_submesh = mx, mz, my, mc
231
+ devices = devices.swapaxes(1, 2)
232
+ tile_by_host = False
233
+ if (my == gy > 1 and mx == mz == 1) or (my == 1 and mx == gx > 1 and mz == gz > 1):
234
+ logging.info("ensuring XZ plane has a Z-major device order")
235
+ # XZ should be ZX
236
+ assert mc == gc, (mc, gc)
237
+ global_hardware_mesh = gz, gy, gx, gc
238
+ model_parallel_submesh = mz, my, mx, mc
239
+ devices = devices.swapaxes(0, 2)
240
+ tile_by_host = False
241
+ if tile_by_host:
242
+ logging.warning(
243
+ "Tiling device assignment mesh by hosts, which may lead to "
244
+ "reduced XLA collective performance. To avoid this, modify "
245
+ "the model parallel submesh or run with more tasks per host."
246
+ )
247
+ tile_err = (
248
+ "to tile the mesh by hosts, each dimension of the model parallel "
249
+ "submesh must be either a factor or a multiple of the corresponding "
250
+ "dimension of the per-host submesh"
251
+ )
252
+
253
+ def dh_dd_mh_md(g: int, m: int, l: int) -> Tuple[int, int, int, int]:
254
+ """Split a global mesh dimension into four tiling components.
255
+
256
+ Args:
257
+ g: global mesh bounds dimension size
258
+ m: model-parallel submesh bounds dimension size
259
+ l: local submesh bounds dimension size
260
+
261
+ Returns:
262
+ The resulting tuple divides the dimension into the hosts component of
263
+ the data-parallel submesh, the devices component of the data-parallel
264
+ submesh, the hosts component of the model-parallel submesh, and the
265
+ devices component of the model-parallel submesh.
266
+ """
267
+ d = g // m
268
+ if m >= l:
269
+ assert not m % l, tile_err
270
+ return (d, 1, m // l, l)
271
+ else:
272
+ assert not l % m, tile_err
273
+ return (d // (l // m), l // m, 1, m)
274
+
275
+ # e.g. [(x_data_hosts, x_data_devs, x_model_hosts, x_model_devs), ...]
276
+ dh_dd_mh_md_tups = map(
277
+ dh_dd_mh_md,
278
+ global_hardware_mesh,
279
+ model_parallel_submesh,
280
+ local_hardware_mesh,
281
+ )
282
+ # reshape to e.g. (x_dh, x_dd, x_mh, x_md, y_dh, ...)
283
+ devices = devices.reshape(*(s for t in dh_dd_mh_md_tups for s in t)) # pylint: disable=g-complex-comprehension
284
+ # TODO(jekbradbury): reorder local subgroups for ring locality
285
+ # Transpose to [data_host], [data_device], [model_host], [model_device]
286
+ # block ordering e.g. (x_dh, y_dh, ..., x_dd, y_dd, ...)
287
+ devices = devices.transpose(
288
+ *(4 * i for i in range(mesh_ndim)),
289
+ *(4 * i + 1 for i in range(mesh_ndim)),
290
+ *(4 * i + 2 for i in range(mesh_ndim)),
291
+ *(4 * i + 3 for i in range(mesh_ndim)),
292
+ )
293
+ else:
294
+ # e.g. [(x_data, x_model), (y_data, y_model), ...]
295
+ model_data_tups = [(g // m, m) for g, m in zip(global_hardware_mesh, model_parallel_submesh)]
296
+ # reshape to e.g. (x_data, x_model, y_data, y_model...)
297
+ devices = devices.reshape(*(s for t in model_data_tups for s in t)) # pylint: disable=g-complex-comprehension
298
+ # TODO(jekbradbury): reorder small subgroups for ring locality
299
+ # transpose to e.g. (x_data, y_data, ..., x_model, ...)
300
+ devices = devices.transpose(*(2 * i for i in range(mesh_ndim)), *(2 * i + 1 for i in range(mesh_ndim)))
301
+ # reshape to (data, model)
302
+ devices = devices.reshape(-1, np.prod(model_parallel_submesh))
303
+ global_mesh = Mesh(devices, ["data", "model"])
304
+ logging.info("global_mesh axis_names: %s", global_mesh.axis_names)
305
+ logging.info("global_mesh devices: %s", global_mesh.devices)
306
+ logging.info("global_mesh devices shape: %s", global_mesh.devices.shape)
307
+ return global_mesh
308
+
309
+
310
+ def get_cpu_mesh() -> Mesh:
311
+ """Trivial mesh for CPU Testing."""
312
+ devices = np.empty((jax.host_count(), jax.local_device_count()), dtype=object)
313
+ for device in jax.devices():
314
+ devices[device.process_index, device.id % jax.local_device_count()] = device
315
+ return Mesh(devices, ["data", "model"])
316
+
317
+
318
+ def get_gpu_mesh(num_partitions: int) -> Mesh:
319
+ """Mesh for GPUs that preferentially places 'model' on NVLink."""
320
+ nvlink_size = jax.local_device_count()
321
+ dcn_size = jax.process_count()
322
+ nvlink_mp = min(num_partitions, nvlink_size)
323
+ nvlink_dp, extra1 = divmod(nvlink_size, nvlink_mp)
324
+ dcn_mp, extra2 = divmod(num_partitions, nvlink_mp)
325
+ assert not (extra1 or extra2), (
326
+ "number of partitions on GPU must be a factor" " or multiple of the number of local devices"
327
+ )
328
+ dcn_dp = dcn_size // dcn_mp
329
+
330
+ devices = create_hybrid_device_mesh(
331
+ mesh_shape=[nvlink_dp, nvlink_mp],
332
+ dcn_mesh_shape=[dcn_dp, dcn_mp],
333
+ process_is_granule=True,
334
+ )
335
+
336
+ global_mesh = Mesh(devices, ["data", "model"])
337
+ logging.info("global_mesh axis_names: %s", global_mesh.axis_names)
338
+ logging.info("global_mesh devices: %s", global_mesh.devices)
339
+ return global_mesh
340
+
341
+
342
+ def default_mesh(
343
+ num_partitions: int,
344
+ model_parallel_submesh: Optional[HardwareMesh] = None,
345
+ backend: Optional[str] = None,
346
+ ) -> Mesh:
347
+ """Attempt to return a default mesh for simple cases.
348
+
349
+ Args:
350
+ num_partitions: number of partitions to use, will be ignored if
351
+ model_parallel_submesh is provided.
352
+ model_parallel_submesh: 4-tuple that specifies the x,y,z,c submesh to use as
353
+ the model-parallel device tile.
354
+ backend: get devices from the pinned backend, if specified. This is useful
355
+ for explicitly specifying the devices other than relying on
356
+ jax_platform_name.
357
+
358
+ Returns:
359
+ xmap/pjit 2D Mesh with 'data', 'model' mesh axes.
360
+ """
361
+ last_device = jax.devices(backend)[-1]
362
+ platform = last_device.platform
363
+ device_kind = last_device.device_kind
364
+ bounds = bounds_from_last_device(last_device)
365
+
366
+ if model_parallel_submesh:
367
+ return get_mesh(model_parallel_submesh, backend=backend)
368
+
369
+ if platform == "cpu":
370
+ return get_cpu_mesh()
371
+ elif platform == "gpu":
372
+ return get_gpu_mesh(num_partitions)
373
+
374
+ mps = None
375
+ if device_kind in ("TPU v2", "TPU v3"):
376
+ if num_partitions == 1:
377
+ mps = (1, 1, 1, 1)
378
+ elif num_partitions == 2:
379
+ mps = (1, 1, 1, 2)
380
+ elif num_partitions == 4:
381
+ mps = (2, 1, 1, 2)
382
+ elif num_partitions == 8:
383
+ mps = (2, 2, 1, 2)
384
+ elif num_partitions == 16:
385
+ mps = (4, 2, 1, 2)
386
+ # assume the use of megacore on TPU v4
387
+ elif (device_kind == "TPU v4" or device_kind == "TPU v4 lite") and bounds[3] == 1:
388
+ if num_partitions == 1:
389
+ mps = (1, 1, 1, 1)
390
+ elif num_partitions == 2:
391
+ mps = (1, 2, 1, 1)
392
+ elif num_partitions == 4:
393
+ if bounds[0] >= 4:
394
+ mps = (4, 1, 1, 1)
395
+ else:
396
+ mps = (2, 2, 1, 1)
397
+ elif num_partitions == 8:
398
+ if bounds[2] >= 8:
399
+ mps = (1, 1, 8, 1)
400
+ else:
401
+ mps = (4, 2, 1, 1)
402
+ elif num_partitions == 16:
403
+ if bounds[2] >= 16:
404
+ mps = (1, 1, 16, 1)
405
+ elif bounds[0] >= 8:
406
+ mps = (8, 2, 1, 1)
407
+ elif bounds[0] >= 4:
408
+ mps = (4, 4, 1, 1)
409
+ else:
410
+ mps = (2, 2, 4, 1)
411
+
412
+ if mps is None:
413
+ raise ValueError(
414
+ "No default mesh for this configuration: specify " "config.model_parallel_submesh explicitly."
415
+ )
416
+ return get_mesh(mps, backend=backend)
417
+
418
+
419
+ # Data chunking helper.
420
+ # -----------------------------------------------------------------------------
421
+ @dataclasses.dataclass
422
+ class LocalChunkInfo:
423
+ # The logical slice of an array located on this host's local devices.
424
+ slice: Tuple[slice, ...]
425
+ # A unique index for this host/local chunk among chunks with the same slice.
426
+ replica_id: int
427
+
428
+
429
+ class LocalChunker:
430
+ """Utility class to aid chunking of sharded arrays in multihost settings."""
431
+
432
+ def __init__(self, global_mesh: Mesh):
433
+ self.global_mesh = global_mesh
434
+ local_mesh = global_mesh.local_mesh
435
+ first_local_device = local_mesh.devices.reshape(-1)[0]
436
+ host_location = collections.OrderedDict(
437
+ zip(
438
+ global_mesh.shape.keys(),
439
+ list(zip(*np.nonzero(global_mesh.devices == first_local_device)))[0],
440
+ )
441
+ )
442
+ self.num_chunks = collections.OrderedDict()
443
+ self.chunk_ids = collections.OrderedDict()
444
+ self.mesh_axes = list(global_mesh.shape.keys())
445
+ for mesh_axis in self.mesh_axes:
446
+ num_devices_per_chunk = local_mesh.shape[mesh_axis]
447
+ self.num_chunks[mesh_axis] = global_mesh.shape[mesh_axis] // num_devices_per_chunk
448
+ self.chunk_ids[mesh_axis] = host_location[mesh_axis] // num_devices_per_chunk
449
+
450
+ def get_local_chunk_info(
451
+ self, global_shape: Tuple[int, ...], mesh_axes: Sequence[Optional[str]]
452
+ ) -> LocalChunkInfo:
453
+ """Get the local chunk info for a given array shape and sharded axes.
454
+
455
+ Args:
456
+ global_shape: the global, unsharded shape of the array to chunk.
457
+ mesh_axes: a sequence of names (or None) of equal rank to `global_shape`
458
+ that specifies which mesh dimensions the array is sharded along.
459
+
460
+ Returns:
461
+ LocalChunkInfo containing the logical slices of the array found on this
462
+ host's local devices, as well as the replica index for this chunk among
463
+ chunks with the same slice. The latter is used to determine which
464
+ host should write this chunk during checkpointing.
465
+ """
466
+ local_slice = [slice(None) for dim in global_shape]
467
+ sharded_mesh_axes = set()
468
+ for i, (mesh_axis, size) in enumerate(zip(mesh_axes, global_shape)):
469
+ if not mesh_axis:
470
+ continue
471
+ sharded_mesh_axes.add(mesh_axis)
472
+ if not isinstance(mesh_axis, str):
473
+ raise NotImplementedError("TODO(jekbradbury)")
474
+ chunk_id = self.chunk_ids[mesh_axis]
475
+ chunk_size = size // self.num_chunks[mesh_axis]
476
+ local_slice[i] = slice(chunk_id * chunk_size, (chunk_id + 1) * chunk_size)
477
+
478
+ replicated_mesh_axes = [mesh_axis for mesh_axis in self.mesh_axes if mesh_axis not in sharded_mesh_axes]
479
+ replica_id = 0
480
+ for mesh_axis in replicated_mesh_axes:
481
+ chunk_id = self.chunk_ids[mesh_axis]
482
+ replica_id = replica_id * self.num_chunks[mesh_axis] + chunk_id
483
+
484
+ return LocalChunkInfo(tuple(local_slice), replica_id)
485
+
486
+
487
+ def standard_logical_axis_rules(
488
+ activation_partitioning_dims: int = 1,
489
+ parameter_partitioning_dims: int = 1,
490
+ additional_rules: Optional[LogicalAxisRules] = None,
491
+ ) -> LogicalAxisRules:
492
+ """Default sharding rules for T5X model in terms of logical axis names.
493
+
494
+ Args:
495
+ activation_partitioning_dims: enables 2-D activation sharding when set to 2.
496
+ parameter_partitioning_dims: enables 2-D parameter sharding when set to 2.
497
+ additional_rules: additional rules (a sequence of tuples) that will be
498
+ appended to the standard rules.
499
+
500
+ Returns:
501
+ Sequence of logical axis rules
502
+ """
503
+ logging.info(
504
+ "`activation_partitioning_dims` = %d, `parameter_partitioning_dims` = %d",
505
+ activation_partitioning_dims,
506
+ parameter_partitioning_dims,
507
+ )
508
+
509
+ if activation_partitioning_dims == 1 and parameter_partitioning_dims == 1:
510
+ rules = [
511
+ ("batch", "data"),
512
+ ("vocab", "model"),
513
+ ("embed", None),
514
+ ("mlp", "model"),
515
+ ("heads", "model"),
516
+ ("kv", None),
517
+ ("joined_kv", "model"), # joined heads+kv dim in 2D attn param layouts
518
+ ]
519
+ elif activation_partitioning_dims == 2 and parameter_partitioning_dims == 1:
520
+ rules = [
521
+ ("batch", "data"),
522
+ ("vocab", "model"),
523
+ ("mlp", "model"),
524
+ ("heads", "model"),
525
+ ("kv", None),
526
+ ("joined_kv", "model"),
527
+ ("embed", "model"),
528
+ ]
529
+ elif activation_partitioning_dims == 1 and parameter_partitioning_dims == 2:
530
+ rules = [
531
+ ("batch", "data"),
532
+ ("vocab", "model"),
533
+ ("mlp", "model"),
534
+ ("heads", "model"),
535
+ ("kv", None),
536
+ ("joined_kv", "model"),
537
+ ("embed", "data"),
538
+ ]
539
+ elif activation_partitioning_dims == 2 and parameter_partitioning_dims == 2:
540
+ rules = [
541
+ ("batch", "data"),
542
+ ("vocab", "model"),
543
+ ("mlp", "model"),
544
+ ("heads", "model"),
545
+ ("kv", None),
546
+ ("joined_kv", "model"),
547
+ ("embed", "model"),
548
+ ("embed", "data"),
549
+ ]
550
+ else:
551
+ raise ValueError(
552
+ f"`activation_partitioning_dims` = {activation_partitioning_dims} "
553
+ f"`parameter_partitioning_dims` = {parameter_partitioning_dims} "
554
+ "is not supported."
555
+ )
556
+
557
+ # Add the common rules for the replicated logical axes names.
558
+ replicated_rules = [
559
+ ("relpos_buckets", None),
560
+ ("abspos_buckets", None),
561
+ ("length", None),
562
+ ("layers", None),
563
+ ("stack", None),
564
+ ("mlp_activations", None),
565
+ ]
566
+ rules.extend(replicated_rules)
567
+
568
+ if additional_rules:
569
+ rules.extend(additional_rules)
570
+
571
+ return rules
572
+
573
+
574
+ # NB: This needs to be top-level for the jax compilation cache.
575
+ def _id_fn(x, ix):
576
+ """Identity function for copying parameters to the devices, sharded."""
577
+ # A pure identity such as `lambda x, *: x` can get optimized away, so we
578
+ # include a random.split as a cheap function that cannot be optimized away.
579
+ y = random.split(random.PRNGKey(jnp.array(ix, dtype=jnp.uint32)))
580
+ return x, y
581
+
582
+
583
+ @dataclasses.dataclass
584
+ class DataLayout:
585
+ """Represents data layout for the partitioned model."""
586
+
587
+ batch_size: int
588
+ shard_id: int
589
+ num_shards: int
590
+ is_first_host_in_replica_set: bool
591
+
592
+
593
+ PartitionedCallable = Callable[..., Any]
594
+ CompiledPartitionedCallable = Callable[..., Any]
595
+
596
+
597
+ class BasePartitioner(metaclass=abc.ABCMeta):
598
+ """Interface for partitioning computations across hardware devices."""
599
+
600
+ def __init__(
601
+ self,
602
+ num_partitions: Optional[int] = None,
603
+ model_parallel_submesh: Optional[HardwareMesh] = None,
604
+ params_on_devices: bool = True,
605
+ backend: Optional[str] = None,
606
+ ):
607
+ """Configures the partitioner.
608
+
609
+ Args:
610
+ num_partitions: the number of partitions to use. Ignored if
611
+ `model_parallel_submesh` is provided.
612
+ model_parallel_submesh: 4-tuple that specifies the x,y,z,c submesh to use
613
+ as the model-parallel device tile. This submesh is used for the larger
614
+ of the two parameter dimensions, and, if 2-D activation sharding is
615
+ enabled, for the model dimension of activations. The rest of the mesh is
616
+ used for data parallelism and, if 2-D parameter sharding is enabled, the
617
+ other parameter dimension.
618
+ params_on_devices: whether to keep the params on devices, if False -
619
+ params stay in the host memory. Note that some partitioners might ignore
620
+ this setting, for example if they don't support storing all params on
621
+ device memory.
622
+ backend: get devices from the pinned backend, if specified. This is useful
623
+ for explicitly specifying the devices other than relying on
624
+ jax_platform_name.
625
+ """
626
+
627
+ if not num_partitions and not model_parallel_submesh:
628
+ raise ValueError("At least one of `num_partitions` or " "`model_parallel_submesh` must be set.")
629
+
630
+ if model_parallel_submesh is not None and len(model_parallel_submesh) != 4:
631
+ logging.error(
632
+ (
633
+ "`model_parallel_submesh` must be either None or a 4-tuple. Got"
634
+ " `model_parallel_submesh`=%s. A ValueError will be raised"
635
+ " beginning March 1, 2022."
636
+ ),
637
+ model_parallel_submesh,
638
+ )
639
+
640
+ if bool(num_partitions) and bool(model_parallel_submesh):
641
+ logging.error(
642
+ (
643
+ "At most one of `num_partitions` or `model_parallel_submesh` can be"
644
+ " set. Got `num_partitions=%s` and `model_parallel_submesh`=%s. A"
645
+ " ValueError will be raised beginning March 21, 2022."
646
+ ),
647
+ num_partitions,
648
+ model_parallel_submesh,
649
+ )
650
+
651
+ self._num_partitions = num_partitions
652
+ self._model_parallel_submesh = model_parallel_submesh
653
+ self._params_on_devices = params_on_devices
654
+ self._data_axis = "data"
655
+ self._backend = backend
656
+
657
+ @property
658
+ def mesh(self) -> Mesh:
659
+ raise NotImplementedError
660
+
661
+ @property
662
+ def data_partition_spec(self) -> PartitionSpec:
663
+ return PartitionSpec(self._data_axis)
664
+
665
+ def get_data_layout(self, batch_size: Optional[int] = None, host_index: Optional[int] = None) -> DataLayout:
666
+ """Returns filled `DataLayout` based on the partitioned model layout.
667
+
668
+ Args:
669
+ batch_size: if set, indicates the requested batch size. The exception will
670
+ be raised if this batch size is not compatible with the layout. If not
671
+ set, the batch size is inferred from the layout.
672
+ host_index: indicates the host index to use for the calculations, if not
673
+ set - use JAX-provided one. Should be in [0, num_hosts) interval and the
674
+ order should match the order of corresponding CPU devices in
675
+ `jax.devices()`.
676
+
677
+ Returns:
678
+ Filled `DataLayout` structure.
679
+ """
680
+ if host_index is not None:
681
+ raise NotImplementedError("Explicit host_index is not yet implemented.")
682
+ if self._data_axis is None:
683
+ return DataLayout(
684
+ batch_size=batch_size,
685
+ shard_id=0,
686
+ num_shards=1,
687
+ is_first_host_in_replica_set=(jax.process_index() == 0),
688
+ )
689
+ mesh_size = self._local_chunker.global_mesh.shape[self._data_axis]
690
+ batch_size = batch_size or mesh_size
691
+ if batch_size % mesh_size:
692
+ raise ValueError(
693
+ f"Batch size ({batch_size}) must be divisible by corresponding " f"mesh size ({mesh_size})."
694
+ )
695
+ num_shards = self._local_chunker.num_chunks[self._data_axis]
696
+ if batch_size % num_shards:
697
+ raise ValueError(f"Batch size ({batch_size}) must be divisible by number of " f"replicas ({num_shards}).")
698
+ replica_id = self._local_chunker.get_local_chunk_info((batch_size,), [self._data_axis]).replica_id
699
+ return DataLayout(
700
+ batch_size=int(batch_size),
701
+ shard_id=int(self._local_chunker.chunk_ids[self._data_axis]),
702
+ num_shards=int(num_shards),
703
+ is_first_host_in_replica_set=(replica_id == 0),
704
+ )
705
+
706
+ def get_local_chunk_info(
707
+ self, global_shape: Tuple[int, ...], mesh_axes: Sequence[Optional[str]]
708
+ ) -> LocalChunkInfo:
709
+ """Returns the local chunk info for a given array shape and sharded axes."""
710
+ return self._local_chunker.get_local_chunk_info(global_shape, mesh_axes)
711
+
712
+ @property
713
+ def params_on_devices(self):
714
+ return self._params_on_devices
715
+
716
+ def move_params_to_devices(self, train_state: TrainState, train_state_axes: TrainState) -> TrainState:
717
+ """Moves the optimizer parameters to devices."""
718
+ p_id_fn = self.partition(
719
+ _id_fn,
720
+ in_axis_resources=(train_state_axes, None),
721
+ out_axis_resources=(train_state_axes, None),
722
+ donate_argnums=(0,),
723
+ )
724
+ if jax.config.jax_array and jax.process_count() > 1:
725
+ train_state = multihost_utils.host_local_array_to_global_array(train_state, self.mesh, train_state_axes)
726
+ train_state, _ = p_id_fn(train_state, jnp.ones((), dtype=jnp.uint32))
727
+ return train_state
728
+
729
+ @property
730
+ @abc.abstractmethod
731
+ def _local_chunker(self):
732
+ """Returns the chunker that matches the parameters of this partitioner."""
733
+ raise NotImplementedError
734
+
735
+ def get_logical_axes(self, train_state: TrainState) -> TrainState:
736
+ """Returns a copy of TrainState with Optional[AxisNames] as leaves."""
737
+ # By default, return None for the logical axes.
738
+ return train_state.restore_state(jax.tree_map(lambda x: None, train_state.state_dict()))
739
+
740
+ def get_mesh_axes(self, train_state: TrainState) -> TrainState:
741
+ """Returns a copy of TrainState with Optional[PartitionSpecs] as leaves."""
742
+ raise NotImplementedError
743
+
744
+ @abc.abstractmethod
745
+ def partition(
746
+ self,
747
+ fn: Callable, # pylint: disable=g-bare-generic
748
+ in_axis_resources,
749
+ out_axis_resources,
750
+ static_argnums: Union[int, Sequence[int]] = (),
751
+ donate_argnums: Union[int, Sequence[int]] = (),
752
+ ) -> PartitionedCallable:
753
+ """Partitions the computation using partitioner-specific implementation.
754
+
755
+ Args:
756
+ fn: the function to partition.
757
+ in_axis_resources: Pytree of structure matching that of arguments to `fn`,
758
+ with all actual arguments replaced by resource assignment
759
+ specifications. It is also valid to specify a pytree prefix (e.g. one
760
+ value in place of a whole subtree), in which case the leaves get
761
+ broadcast to all values in that subtree.
762
+ The valid resource assignment specifications are:
763
+ `None`: in which case the value will be replicated on all devices
764
+ `PartitionSpec`: a tuple of length at most equal to the rank of the
765
+ partitioned value. Each element can be a `None`, a mesh axis or a
766
+ tuple of mesh axes, and specifies the set of resources assigned to
767
+ partition the value's dimension matching its position in the spec.
768
+ out_axis_resources: Like `in_axis_resources`, but specifies resource
769
+ assignment for function outputs.
770
+ static_argnums: an optional int or collection of ints that specify which
771
+ positional arguments to treat as static (compile-time constant) in the
772
+ partitioned function.
773
+ donate_argnums: an optional int or collection of ints that specify which
774
+ argument buffers are "donated" to the computation. It is safe to donate
775
+ argument buffers if you no longer need them once the computation has
776
+ finished.
777
+
778
+ Returns:
779
+ A partitioned version of the input function.
780
+ """
781
+ raise NotImplementedError
782
+
783
+ @abc.abstractmethod
784
+ def compile(self, partitioned_fn: PartitionedCallable, *args) -> CompiledPartitionedCallable:
785
+ """Compiles and returns the partitioned function, or the original.
786
+
787
+ Args:
788
+ partitioned_fn: The partitioned function.
789
+ *args: Sample arguments to the partitioned function matching the input
790
+ shapes that will be passed to the compiled function.
791
+
792
+ Returns:
793
+ The compiled function, or the original if this partitioner does not
794
+ support compilation.
795
+ """
796
+ raise NotImplementedError
797
+
798
+
799
+ class PjittedFnWithContext(PartitionedCallable):
800
+ """Wraps pjitted function to apply the appropriate contexts."""
801
+
802
+ def __init__(
803
+ self,
804
+ pjitted_fn,
805
+ partition_mesh: Mesh,
806
+ logical_axis_rules: flax_partitioning.LogicalRules = (),
807
+ ):
808
+ self._pjitted_fn = pjitted_fn
809
+ self._mesh = partition_mesh
810
+ self._logical_axis_rules = logical_axis_rules
811
+
812
+ def __call__(self, *args):
813
+ with Mesh(self._mesh.devices, self._mesh.axis_names), flax_partitioning.axis_rules(self._logical_axis_rules):
814
+ return self._pjitted_fn(*args)
815
+
816
+ def lower(self, *args):
817
+ with Mesh(self._mesh.devices, self._mesh.axis_names), flax_partitioning.axis_rules(self._logical_axis_rules):
818
+ return self._pjitted_fn.lower(*args)
819
+
820
+
821
+ class BasePjitPartitioner(BasePartitioner):
822
+ """Partitioner that uses T5X version of jax.pjit."""
823
+
824
+ @cached_property
825
+ def _local_chunker(self) -> LocalChunker:
826
+ return LocalChunker(self.mesh)
827
+
828
+ @cached_property
829
+ def mesh(self) -> Mesh:
830
+ return default_mesh(self._num_partitions, self._model_parallel_submesh, self._backend)
831
+
832
+ def partition(
833
+ self,
834
+ fn: Callable, # pylint: disable=g-bare-generic
835
+ in_axis_resources,
836
+ out_axis_resources,
837
+ static_argnums: Union[int, Sequence[int]] = (),
838
+ donate_argnums: Union[int, Sequence[int]] = (),
839
+ ) -> PjittedFnWithContext:
840
+ pjitted = pjit(
841
+ fn,
842
+ in_axis_resources=in_axis_resources,
843
+ out_axis_resources=out_axis_resources,
844
+ static_argnums=static_argnums,
845
+ donate_argnums=donate_argnums,
846
+ backend=self._backend,
847
+ )
848
+
849
+ return PjittedFnWithContext(pjitted, self.mesh)
850
+
851
+ def compile(self, partitioned_fn: PjittedFnWithContext, *args) -> CompiledPartitionedCallable:
852
+ return partitioned_fn.lower(*args).compile()
853
+
854
+
855
+ class PjitPartitioner(BasePjitPartitioner):
856
+ """Partitioner that uses named axes and jax.pjit."""
857
+
858
+ def __init__(
859
+ self,
860
+ num_partitions: Optional[int] = None,
861
+ model_parallel_submesh: Optional[HardwareMesh] = None,
862
+ params_on_devices: bool = True,
863
+ backend: Optional[str] = None,
864
+ logical_axis_rules: Optional[LogicalAxisRules] = None,
865
+ use_cpu_pjit: Optional[bool] = False,
866
+ ):
867
+ """PjitPartitioner constructor.
868
+
869
+ See https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.mdx/usage/partitioning for details.
870
+
871
+ Args:
872
+ num_partitions: an integer that specifies the size of the model parallel
873
+ submesh to be automatically selected for the current topology. See
874
+ `model_parallel_submesh` for details on how this submesh is used.
875
+ Mutually exlusive with `model_parallel_submesh`.
876
+ model_parallel_submesh: is a 4-tuple that specifies the `(x, y, z, c)`
877
+ submesh model-parallel device tile, an axis of accelerator parallelism
878
+ orthogonal to data parallelism. Array axes in a model's parameters or
879
+ activations can be sharded over this submesh using axis rules (see
880
+ `logical_axis_rules`) that map them to 'model'. The effective number of
881
+ model sub-partitions is equal to `np.prod(model_parallel_submesh)` and
882
+ must evenly divide the total number of devices (i.e.,
883
+ `jax.device_count() % np.prod(model_parallel_submesh) == 0`). The rest
884
+ of the TPU mesh is the data parallel submesh, providing
885
+ `jax.device_count() // np.prod(model_parallel_submesh)` partitions. It
886
+ is used for data (batch) parallelism and to shard other array axes that
887
+ are mapped to 'data'. This argument is mutually exclusive with
888
+ `num_partitions`.
889
+ params_on_devices: whether to keep the params on devices, if False -
890
+ params stay in the host memory. Note that some partitioners might ignore
891
+ this setting, for example if they don't support storing all params on
892
+ device memory.
893
+ backend: get devices from the pinned backend, if specified. This is
894
+ useful for explicitly specifying the devices other than relying on
895
+ jax_platform_name.
896
+ logical_axis_rules: a priority-ordered sequence of KV tuples that maps
897
+ logical axis names to either `None` (not sharded), 'model' (to shard
898
+ across the model-parallel submesh), or 'data' (to shard across the
899
+ data-parallel submesh).
900
+ use_cpu_pjit: enables wrapper function for pjit which just jits the
901
+ function if using CPU backend.
902
+ """
903
+ super().__init__(
904
+ num_partitions=num_partitions,
905
+ model_parallel_submesh=model_parallel_submesh,
906
+ params_on_devices=params_on_devices,
907
+ backend=backend,
908
+ )
909
+ if logical_axis_rules is None:
910
+ logical_axis_rules = standard_logical_axis_rules()
911
+ self._logical_axis_rules = tuple(logical_axis_rules)
912
+ (self._data_axis,) = flax_partitioning.logical_to_mesh_axes(["batch"], logical_axis_rules)
913
+ self._use_cpu_pjit = use_cpu_pjit
914
+
915
+ def partition(
916
+ self,
917
+ fn: Callable, # pylint: disable=g-bare-generic
918
+ in_axis_resources,
919
+ out_axis_resources,
920
+ static_argnums: Union[int, Sequence[int]] = (),
921
+ donate_argnums: Union[int, Sequence[int]] = (),
922
+ ) -> PjittedFnWithContext:
923
+ """Partitions the function using jax.pjit."""
924
+ if self._use_cpu_pjit:
925
+ pjit_fn = pjit_with_cpu_fallback
926
+ else:
927
+ pjit_fn = pjit
928
+ pjitted = pjit_fn(
929
+ fn,
930
+ in_axis_resources=in_axis_resources,
931
+ out_axis_resources=out_axis_resources,
932
+ static_argnums=static_argnums,
933
+ donate_argnums=donate_argnums,
934
+ backend=self._backend,
935
+ )
936
+
937
+ return PjittedFnWithContext(pjitted, self.mesh, self._logical_axis_rules)
938
+
939
+ @property
940
+ def logical_axis_rules(self):
941
+ """Returns the logical axis rules."""
942
+ return self._logical_axis_rules
943
+
944
+ def get_logical_axes(self, train_state: TrainState) -> TrainState:
945
+ """Returns a copy of TrainState with Optional[AxisNames] as leaves."""
946
+ return train_state.as_logical_axes()
947
+
948
+ def get_mesh_axes(self, train_state: TrainState) -> TrainState:
949
+ """Returns a copy of TrainState with Optional[PartitionSpecs] as leaves."""
950
+ logical_axes = self.get_logical_axes(train_state)
951
+
952
+ def _logical_to_mesh_axes(param_name, logical_axes):
953
+ if logical_axes is None:
954
+ return None
955
+ elif logical_axes is traverse_util.empty_node:
956
+ return traverse_util.empty_node
957
+ try:
958
+ return flax_partitioning.logical_to_mesh_axes(logical_axes, self._logical_axis_rules)
959
+ except ValueError as e:
960
+ raise ValueError(f"Failed to map logical axes for {param_name}") from e
961
+
962
+ flat_logical_axes = traverse_util.flatten_dict(logical_axes.state_dict(), keep_empty_nodes=True, sep="/")
963
+ flat_mesh_axes = {k: _logical_to_mesh_axes(k, v) for k, v in flat_logical_axes.items()}
964
+
965
+ return logical_axes.restore_state(traverse_util.unflatten_dict(flat_mesh_axes, sep="/"))
distil_whisper/pipeline.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Whisper JAX pipeline compatible with Distil Whisper checkpoints. Copied from https://github.com/sanchit-gandhi/whisper-jax/blob/main/whisper_jax/pipeline.py"""
17
+
18
+ import math
19
+
20
+ import jax
21
+ import jax.numpy as jnp
22
+ import numpy as np
23
+ import requests
24
+ import torch
25
+ from flax import jax_utils
26
+ from flax.core.frozen_dict import freeze
27
+ from flax.training.common_utils import shard
28
+ from transformers import WhisperFeatureExtractor, WhisperTokenizerFast
29
+ from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
30
+ from transformers.pipelines.audio_utils import ffmpeg_read
31
+ from transformers.utils import logging
32
+
33
+ from .modeling_flax_whisper import FlaxWhisperForConditionalGeneration
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+
39
+ class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor):
40
+ def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
41
+ """
42
+ Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation
43
+ computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation
44
+ in transformers, and matches to within 1e-5 abs tolerance.
45
+ """
46
+ waveform = torch.from_numpy(waveform).type(torch.float32)
47
+
48
+ window = torch.hann_window(self.n_fft)
49
+ stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
50
+ magnitudes = stft[..., :-1].abs() ** 2
51
+
52
+ mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
53
+ mel_spec = mel_filters.T @ magnitudes
54
+
55
+ log_spec = torch.clamp(mel_spec, min=1e-10).log10()
56
+ log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
57
+ log_spec = (log_spec + 4.0) / 4.0
58
+ return log_spec.numpy()
59
+
60
+
61
+ class FlaxWhisperPipeline:
62
+ def __init__(
63
+ self,
64
+ checkpoint="openai/whisper-large-v2",
65
+ dtype=jnp.float32,
66
+ batch_size=None,
67
+ max_length=None,
68
+ **kwargs,
69
+ ):
70
+ """
71
+ Args
72
+ checkpoint (`str`, *optional*, defaults to `"openai/whisper-large-v2"):
73
+ The Whisper checkpoint to use with the pipeline. Must be an available checkpoint on the Hugging Face Hub
74
+ with Flax weights.
75
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
76
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
77
+ `jax.numpy.bfloat16` (on TPUs). This can be used to enable half-precision inference on GPUs or TPUs.
78
+ If specified all the computation will be performed with the given `dtype`. **Note that this only
79
+ specifies the dtype of the computation and does not influence the dtype of model parameters.**
80
+ batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`):
81
+ The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing
82
+ a batch size in the `__init__` method will be superseded by any batch size passed to the `__call__` method.
83
+ max_length (`int`, *optional*):
84
+ The maximum numbers of tokens to generate. Defaults to `model.config.max_length`.
85
+ """
86
+ self.checkpoint = checkpoint
87
+ self.dtype = dtype
88
+
89
+ self.feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(self.checkpoint)
90
+ self.tokenizer = WhisperTokenizerFast.from_pretrained(self.checkpoint)
91
+
92
+ self.model, self.params = FlaxWhisperForConditionalGeneration.from_pretrained(
93
+ self.checkpoint,
94
+ _do_init=False,
95
+ dtype=self.dtype,
96
+ **kwargs,
97
+ )
98
+
99
+ self.max_length = max_length if max_length is not None else self.model.generation_config.max_length
100
+ self.min_batch_size = jax.local_device_count()
101
+ self.batch_size = (
102
+ batch_size if batch_size is not None else self.min_batch_size
103
+ ) # we need a minimum of 1 batch per-device
104
+
105
+ def generate(
106
+ params,
107
+ input_features,
108
+ forced_decoder_ids,
109
+ return_timestamps,
110
+ num_beams,
111
+ length_penalty,
112
+ do_sample,
113
+ top_k,
114
+ temperature,
115
+ ):
116
+ output_ids = self.model.pipeline_generate(
117
+ input_features,
118
+ params=params,
119
+ forced_decoder_ids=forced_decoder_ids,
120
+ return_timestamps=return_timestamps,
121
+ max_length=self.max_length,
122
+ num_beams=num_beams,
123
+ length_penalty=length_penalty,
124
+ do_sample=do_sample,
125
+ top_k=top_k,
126
+ temperature=temperature,
127
+ )
128
+ return output_ids
129
+
130
+ self.params = jax_utils.replicate(self.params)
131
+ self.p_generate = jax.pmap(
132
+ generate,
133
+ "input_features",
134
+ in_axes=(0, 0, None, None, None, None, None, None, None),
135
+ static_broadcasted_argnums=(
136
+ 3,
137
+ 4,
138
+ 5,
139
+ 6,
140
+ 7,
141
+ 8,
142
+ ),
143
+ )
144
+
145
+ def generate(
146
+ self,
147
+ input_features,
148
+ language=None,
149
+ task=None,
150
+ return_timestamps=False,
151
+ num_beams=1,
152
+ length_penalty=1.0,
153
+ do_sample=False,
154
+ top_k=50,
155
+ temperature=1.0,
156
+ ):
157
+ forced_decoder_ids = self.get_forced_decoder_ids(
158
+ language=language, task=task, return_timestamps=return_timestamps
159
+ )
160
+ # if we're using pmap we need to manually replicate the input data across devices and gather the output tokens
161
+ output_ids = self.p_generate(
162
+ freeze(self.params),
163
+ shard(input_features),
164
+ forced_decoder_ids,
165
+ return_timestamps,
166
+ num_beams,
167
+ length_penalty,
168
+ do_sample,
169
+ top_k,
170
+ temperature,
171
+ ).sequences
172
+ output_ids = jax.device_get(output_ids.reshape(-1, self.max_length))
173
+ return output_ids
174
+
175
+ def get_forced_decoder_ids(self, generation_config=None, task=None, language=None, return_timestamps=False):
176
+ if generation_config is None:
177
+ generation_config = self.model.generation_config
178
+
179
+ if hasattr(generation_config, "is_multilingual"):
180
+ is_multilingual = generation_config.is_multilingual
181
+ else:
182
+ is_multilingual = None
183
+
184
+ forced_decoder_ids = []
185
+
186
+ if is_multilingual:
187
+ if language is not None:
188
+ language = language.lower()
189
+ if language in generation_config.lang_to_id.keys():
190
+ language_token = language
191
+ elif language in TO_LANGUAGE_CODE.values():
192
+ language_token = f"<|{language}|>"
193
+ elif language in TO_LANGUAGE_CODE.keys():
194
+ language_token = f"<|{TO_LANGUAGE_CODE[language]}|>"
195
+ else:
196
+ if len(language) == 2:
197
+ # ISO 639-1 language code
198
+ acceptable_languages = list(TO_LANGUAGE_CODE.values())
199
+ elif "<" in language or "|" in language or ">" in language:
200
+ # generation config language code
201
+ acceptable_languages = list(generation_config.lang_to_id.keys())
202
+ else:
203
+ # language passed as a string
204
+ acceptable_languages = list(TO_LANGUAGE_CODE.keys())
205
+ raise ValueError(
206
+ f"Unsupported language: {language}. Language should be one of:" f" {acceptable_languages}."
207
+ )
208
+ forced_decoder_ids.append((1, generation_config.lang_to_id[language_token]))
209
+
210
+ if task is not None:
211
+ forced_decoder_ids.append((2, generation_config.task_to_id[task]))
212
+ else:
213
+ forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"]))
214
+
215
+ if not return_timestamps:
216
+ if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id:
217
+ idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1
218
+ forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id))
219
+
220
+ return forced_decoder_ids
221
+
222
+ def chunk_iter_with_batch(self, inputs, chunk_len, stride_left, stride_right, batch_size):
223
+ inputs_len = inputs.shape[0]
224
+ step = chunk_len - stride_left - stride_right
225
+
226
+ all_chunk_start_idx = np.arange(0, inputs_len, step)
227
+ num_samples = len(all_chunk_start_idx)
228
+
229
+ num_batches = math.ceil(num_samples / batch_size)
230
+ batch_idx = np.array_split(np.arange(num_samples), num_batches)
231
+
232
+ for idx in batch_idx:
233
+ chunk_start_idx = all_chunk_start_idx[idx]
234
+
235
+ chunk_end_idx = chunk_start_idx + chunk_len
236
+
237
+ chunks = [inputs[chunk_start:chunk_end] for chunk_start, chunk_end in zip(chunk_start_idx, chunk_end_idx)]
238
+ processed = self.feature_extractor(
239
+ chunks, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np"
240
+ )
241
+
242
+ _stride_left = np.where(chunk_start_idx == 0, 0, stride_left)
243
+ is_last = np.where(stride_right > 0, chunk_end_idx > inputs_len, chunk_end_idx >= inputs_len)
244
+ _stride_right = np.where(is_last, 0, stride_right)
245
+
246
+ chunk_lens = [chunk.shape[0] for chunk in chunks]
247
+ strides = [
248
+ (chunk_l, _stride_l, _stride_r)
249
+ for chunk_l, _stride_l, _stride_r in zip(chunk_lens, _stride_left, _stride_right)
250
+ ]
251
+
252
+ yield {"stride": strides, **processed}
253
+
254
+ def preprocess_batch(self, inputs, chunk_length_s=30.0, stride_length_s=None, batch_size=None):
255
+ if isinstance(inputs, np.ndarray):
256
+ logger.warning(
257
+ "Numpy array passed as input - no sampling rate checks will be performed."
258
+ "It is strongly recommended to pass the input as a dictionary with an 'array' key "
259
+ "containing the numpy array representing the audio, and a 'sampling_rate' key "
260
+ "containing the sampling rate associated with the audio array."
261
+ "Failing to do so can result in silent errors that might be hard to debug."
262
+ )
263
+
264
+ if isinstance(inputs, str):
265
+ if inputs.startswith("http://") or inputs.startswith("https://"):
266
+ # We need to actually check for a real protocol, otherwise it's impossible to use a local file
267
+ # like http_huggingface_co.png
268
+ inputs = requests.get(inputs).content
269
+ else:
270
+ with open(inputs, "rb") as f:
271
+ inputs = f.read()
272
+
273
+ if isinstance(inputs, bytes):
274
+ inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
275
+
276
+ stride = None
277
+ if isinstance(inputs, dict):
278
+ stride = inputs.get("stride", None)
279
+ # Accepting `"array"` which is the key defined in `datasets` for
280
+ # better integration
281
+ if not ("sampling_rate" in inputs and "array" in inputs):
282
+ raise ValueError(
283
+ "When passing a dictionary to FlaxWhisperPipline, the dict needs to contain an 'array' key "
284
+ "containing the numpy array representing the audio, and a 'sampling_rate' key "
285
+ "containing the sampling rate associated with the audio array."
286
+ )
287
+
288
+ in_sampling_rate = inputs.get("sampling_rate")
289
+ inputs = inputs.get("array", None)
290
+
291
+ if in_sampling_rate != self.feature_extractor.sampling_rate:
292
+ try:
293
+ import librosa
294
+ except ImportError as err:
295
+ raise ImportError(
296
+ "To support resampling audio files, please install 'librosa' and 'soundfile'."
297
+ ) from err
298
+
299
+ inputs = librosa.resample(
300
+ inputs, orig_sr=in_sampling_rate, target_sr=self.feature_extractor.sampling_rate
301
+ )
302
+ ratio = self.feature_extractor.sampling_rate / in_sampling_rate
303
+ else:
304
+ ratio = 1
305
+
306
+ if not isinstance(inputs, np.ndarray):
307
+ raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
308
+ if len(inputs.shape) != 1:
309
+ raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
310
+
311
+ if stride is not None:
312
+ if stride[0] + stride[1] > inputs.shape[0]:
313
+ raise ValueError("Stride is too large for input")
314
+
315
+ # Stride needs to get the chunk length here, it's going to get
316
+ # swallowed by the `feature_extractor` later, and then batching
317
+ # can add extra data in the inputs, so we need to keep track
318
+ # of the original length in the stride so we can cut properly.
319
+ stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
320
+
321
+ if chunk_length_s:
322
+ if stride_length_s is None:
323
+ stride_length_s = chunk_length_s / 6
324
+
325
+ if isinstance(stride_length_s, (int, float)):
326
+ stride_length_s = [stride_length_s, stride_length_s]
327
+
328
+ chunk_len = round(chunk_length_s * self.feature_extractor.sampling_rate)
329
+ stride_left = round(stride_length_s[0] * self.feature_extractor.sampling_rate)
330
+ stride_right = round(stride_length_s[1] * self.feature_extractor.sampling_rate)
331
+
332
+ if chunk_len < stride_left + stride_right:
333
+ raise ValueError("Chunk length must be superior to stride length")
334
+
335
+ for item in self.chunk_iter_with_batch(
336
+ inputs,
337
+ chunk_len,
338
+ stride_left,
339
+ stride_right,
340
+ batch_size,
341
+ ):
342
+ yield item
343
+ else:
344
+ processed = self.feature_extractor(
345
+ inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np"
346
+ )
347
+ if stride is not None:
348
+ processed["stride"] = stride
349
+ yield processed
350
+
351
+ def postprocess(self, model_outputs, return_timestamps=None, return_language=None):
352
+ # unpack the outputs from list(dict(list)) to list(dict)
353
+ model_outputs = [dict(zip(output, t)) for output in model_outputs for t in zip(*output.values())]
354
+
355
+ time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions
356
+ # Send the chunking back to seconds, it's easier to handle in whisper
357
+ sampling_rate = self.feature_extractor.sampling_rate
358
+ for output in model_outputs:
359
+ if "stride" in output:
360
+ chunk_len, stride_left, stride_right = output["stride"]
361
+ # Go back in seconds
362
+ chunk_len /= sampling_rate
363
+ stride_left /= sampling_rate
364
+ stride_right /= sampling_rate
365
+ output["stride"] = chunk_len, stride_left, stride_right
366
+
367
+ text, optional = self.tokenizer._decode_asr(
368
+ model_outputs,
369
+ return_timestamps=return_timestamps,
370
+ return_language=return_language,
371
+ time_precision=time_precision,
372
+ )
373
+ return {"text": text, **optional}
374
+
375
+ def forward(
376
+ self,
377
+ model_inputs,
378
+ batch_size=None,
379
+ language=None,
380
+ task=None,
381
+ return_timestamps=False,
382
+ num_beams=1,
383
+ length_penalty=1.0,
384
+ do_sample=False,
385
+ top_k=50,
386
+ temperature=1.0,
387
+ ):
388
+ # We need to keep track of some additional input arguments for post-processing so need to forward these on after running generation
389
+ input_features = model_inputs.pop("input_features")
390
+ input_batch_size = input_features.shape[0]
391
+
392
+ if input_batch_size != batch_size:
393
+ padding = np.zeros([batch_size - input_batch_size, *input_features.shape[1:]], input_features.dtype)
394
+ input_features = np.concatenate([input_features, padding])
395
+
396
+ pred_ids = self.generate(
397
+ input_features,
398
+ language=language,
399
+ task=task,
400
+ return_timestamps=return_timestamps,
401
+ num_beams=num_beams,
402
+ length_penalty=length_penalty,
403
+ do_sample=do_sample,
404
+ top_k=top_k,
405
+ temperature=temperature,
406
+ )[:input_batch_size]
407
+
408
+ # tokenizer's decode method expects an extra dim - we insert it here for convenience
409
+ out = {"tokens": pred_ids[:, None, :]}
410
+
411
+ stride = model_inputs.pop("stride", None)
412
+ if stride is not None:
413
+ out["stride"] = stride
414
+
415
+ return out
416
+
417
+ def __call__(
418
+ self,
419
+ inputs,
420
+ chunk_length_s=30.0,
421
+ stride_length_s=None,
422
+ batch_size=None,
423
+ language=None,
424
+ task=None,
425
+ return_timestamps=None,
426
+ num_beams=1,
427
+ length_penalty=1.0,
428
+ do_sample=False,
429
+ top_k=50,
430
+ temperature=1.0,
431
+ ):
432
+ """
433
+ Transcribe an audio input sequence to a text transcription, optionally with timestamps.
434
+
435
+ Args:
436
+ inputs (`np.ndarray` or `bytes` or `str` or `dict`):
437
+ The inputs is either:
438
+ - `str` that is the filename of the audio file, the file will be read at the correct sampling rate
439
+ to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system.
440
+ - `bytes` is the byte content of an audio file and is interpreted by *ffmpeg* in the
441
+ same way.
442
+ - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
443
+ Raw audio assumed to be at the correct sampling rate (16kHz). Note that no further sampling
444
+ rate check will be done.
445
+ - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this
446
+ pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "array":
447
+ np.array}`. Optionally an additional argument `"stride": (left: int, right: int)` can be used to
448
+ ask the pipeline to treat the first `left` samples and last `right` samples to be ignored in
449
+ decoding (but used at inference to provide more context to the model). In general, this additional
450
+ stride argument is not required.
451
+ chunk_length_s (`float`, *optional*, defaults to 30.0):
452
+ The input length for each chunk. If `chunk_length_s = 0` then chunking is disabled. By default, the chunk
453
+ length is set 30.0s, equal to Whisper's context window.
454
+ stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`):
455
+ The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables
456
+ the model to *see* more context and infer letters better than without this context but the pipeline
457
+ discards the stride bits at the end to make the final reconstitution as perfect as possible.
458
+
459
+ <Tip>
460
+
461
+ For more information on how to effectively use `stride_length_s`, refer to the [ASR chunking
462
+ blog post](https://huggingface.co/blog/asr-chunking).
463
+
464
+ </Tip>
465
+ batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`):
466
+ The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing
467
+ a batch size in the `__call__` method will supersede any batch size passed to the `__init__`.
468
+ task (`str`, *optional*):
469
+ Task to use for generation, either `"transcribe"` or `"translate"`. Defaults to `"transcribe"`.
470
+ language (`str`, *optional*):
471
+ Language token to use for generation, can be either in the form of `"<|en|>"`, `"en"` or `"english"`.
472
+ Defaults to `None`, meaning the language is automatically inferred from the audio input.
473
+ return_timestamps (*optional*, `bool`):
474
+ Whether to return timestamps in the prediction. Defaults to False. If set to true, the pipeline
475
+ will return two keys in the output dictionary: `"text"` containing the text transcription, and `"chunks"`
476
+ containing the transcription segments chunked by their utterance-level timestamps.
477
+ length_penalty (*optional*, `float`):
478
+ Exponential penalty to the length that is used with beam-based generation. It is applied as an
479
+ exponent to the sequence length, which in turn is used to divide the score of the sequence. Since
480
+ the score is the log likelihood of the sequence (i.e. negative), length_penalty > 1.0 promotes
481
+ longer sequences, while length_penalty < 1.0 encourages shorter sequences.
482
+ do_sample (*optional*, `bool`):
483
+ Whether or not to use sampling ; use greedy decoding otherwise.
484
+ top_k (*optional*, `int`):
485
+ The number of the highest probability vocabulary tokens to keep for top-k-filtering.
486
+ temperature (*optional*, `float`):
487
+ The value used to modulate the next token probabilities if sampling.
488
+
489
+ Return:
490
+ `Dict`: A dictionary with the following keys:
491
+ - **text** (`str` ) -- The recognised text.
492
+ - **chunks** (*optional(, `List[Dict]`)
493
+ When using `return_timestamps`, the `chunks` will become a list containing all the various text
494
+ chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamps": (0.5,0.9), {"text":
495
+ "there", "timestamps": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing
496
+ `"".join(chunk["text"] for chunk in output["chunks"])`.
497
+ """
498
+ batch_size = batch_size if batch_size is not None else self.batch_size
499
+ if batch_size % self.min_batch_size != 0:
500
+ raise ValueError(
501
+ f"Batch size must be a multiple of the number of JAX devices, but got batch size {batch_size} and num devices {self.min_batch_size}."
502
+ )
503
+
504
+ dataloader = self.preprocess_batch(
505
+ inputs, chunk_length_s=chunk_length_s, stride_length_s=stride_length_s, batch_size=batch_size
506
+ )
507
+ model_outputs = []
508
+ # iterate over our chunked audio samples
509
+ for batch in dataloader:
510
+ model_outputs.append(
511
+ self.forward(
512
+ batch,
513
+ batch_size=batch_size,
514
+ language=language,
515
+ task=task,
516
+ return_timestamps=return_timestamps,
517
+ num_beams=num_beams,
518
+ length_penalty=length_penalty,
519
+ do_sample=do_sample,
520
+ top_k=top_k,
521
+ temperature=temperature,
522
+ )
523
+ )
524
+ post_processed = self.postprocess(model_outputs, return_timestamps=return_timestamps)
525
+ return post_processed
distil_whisper/train_state.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Mapping, MutableMapping, Optional, Tuple
2
+
3
+ import flax.core
4
+ import flax.serialization
5
+ import flax.struct
6
+ import jax.numpy as jnp
7
+ from flax import traverse_util
8
+ from flax.core import scope as flax_scope
9
+ from flax.linen import partitioning as flax_partitioning
10
+
11
+
12
+ EMPTY_DICT = flax.core.freeze({})
13
+ FrozenDict = flax_scope.FrozenDict
14
+ FrozenVariableDict = flax_scope.FrozenVariableDict
15
+ MutableVariableDict = flax_scope.MutableVariableDict
16
+ VariableDict = flax_scope.VariableDict
17
+
18
+
19
+ def _validate_params_axes(params_axes, params):
20
+ axis_names = flax_partitioning.get_axis_names(params_axes)
21
+ missing_params_axes = set(traverse_util.flatten_dict(params, sep="/")) - set(
22
+ traverse_util.flatten_dict(axis_names, sep="/")
23
+ )
24
+ if missing_params_axes:
25
+ raise ValueError(f"Missing axis names for parameters: {missing_params_axes}")
26
+
27
+
28
+ def _split_variables_and_axes(
29
+ variables_and_axes: FrozenVariableDict,
30
+ ) -> Tuple[FrozenVariableDict, FrozenVariableDict]:
31
+ """Splits `variables_and_axes` into two separate dicts with the same keys."""
32
+ # For each `key`, `key_axes` (if any) are its axes in `variables_and_axes`.
33
+ variables = {}
34
+ axes = {}
35
+ for k, v in variables_and_axes.items():
36
+ if k.endswith("_axes"):
37
+ axes[k[:-5]] = v # k without "_axes".
38
+ _validate_params_axes(v, variables_and_axes[k[:-5]]) # k without "_axes".
39
+ else:
40
+ variables[k] = v
41
+ return flax.core.freeze(variables), flax.core.freeze(axes)
42
+
43
+
44
+ class InferenceState(flax.struct.PyTreeNode):
45
+ """State compatible with FlaxOptimTrainState without optimizer state."""
46
+
47
+ step: jnp.ndarray
48
+ params: flax_scope.FrozenVariableDict
49
+ params_axes: Optional[flax_scope.FrozenVariableDict] = None
50
+ flax_mutables: flax_scope.FrozenDict = EMPTY_DICT
51
+ flax_mutables_axes: Optional[flax_scope.FrozenVariableDict] = None
52
+
53
+ @classmethod
54
+ def create(cls, model_variables: FrozenVariableDict) -> "InferenceState":
55
+ other_variables, params = model_variables.pop("params")
56
+ if "params_axes" in other_variables:
57
+ other_variables, params_axes = other_variables.pop("params_axes")
58
+ _validate_params_axes(params_axes, params)
59
+ else:
60
+ params_axes = None
61
+
62
+ # Split other_variables into mutables and their corresponding axes.
63
+ flax_mutables, flax_mutables_axes = _split_variables_and_axes(other_variables)
64
+ flax_mutables_axes = flax_mutables_axes or None
65
+ return InferenceState(
66
+ step=jnp.array(0),
67
+ params=params,
68
+ params_axes=params_axes,
69
+ flax_mutables=flax_mutables,
70
+ flax_mutables_axes=flax_mutables_axes,
71
+ )
72
+
73
+ @property
74
+ def param_states(self) -> FrozenVariableDict:
75
+ """The optimizer states of the parameters as a PyTree."""
76
+ raise NotImplementedError("InferenceState has no optimizer states.")
77
+
78
+ def apply_gradient(self, *args, **kwargs) -> "InferenceState":
79
+ raise NotImplementedError("InferenceState does not support `apply_gradient`.")
80
+
81
+ def state_dict(self) -> MutableMapping[str, Any]:
82
+ state_dict = {
83
+ "target": flax.core.unfreeze(self.params),
84
+ "state": {"step": self.step},
85
+ }
86
+ if self.flax_mutables:
87
+ state_dict["flax_mutables"] = flax.core.unfreeze(self.flax_mutables)
88
+ return state_dict
89
+
90
+ def replace_step(self, step: jnp.ndarray) -> "InferenceState":
91
+ return self.replace(step=step)
92
+
93
+ def replace_params(self, params: FrozenVariableDict) -> "InferenceState":
94
+ return self.replace(params=params)
95
+
96
+ def replace_flax_mutables(self, flax_mutables: FrozenDict) -> "InferenceState":
97
+ return self.replace(flax_mutables=flax_mutables)
98
+
99
+ def restore_state(self, state_dict: Mapping[str, Any]) -> "InferenceState":
100
+ return self.replace(
101
+ params=flax.core.freeze(state_dict["target"]),
102
+ step=state_dict["state"]["step"],
103
+ flax_mutables=(
104
+ flax.core.freeze(state_dict["flax_mutables"]) if "flax_mutables" in state_dict else EMPTY_DICT
105
+ ),
106
+ )
107
+
108
+ def as_logical_axes(self) -> "InferenceState":
109
+ # Set step to None so that when the logical axes are processed by the
110
+ # flax.partitioning.logical_to_mesh_axes function, it will be skipped
111
+ # because jax.tree_map will short circut and never call the function on the
112
+ # step.
113
+ flax_mutables_axes = self.flax_mutables_axes or EMPTY_DICT
114
+ return InferenceState(
115
+ step=None,
116
+ params=flax_partitioning.get_axis_names(self.params_axes),
117
+ flax_mutables=flax_partitioning.get_axis_names(flax_mutables_axes),
118
+ )
events.out.tfevents.1696323477.t1v-n-4eccb2d4-w-0.2889203.0.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e50d1c4acaf53861664c29cb9b845856a6c4b304c1d41c2c187d54bbfd22076a
3
+ size 51942
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:843c32ed2be9c335890c72e0b7d859323f97e3dae078a2ddc93402300d3272a7
3
+ size 6173221863
generation_config.json ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 10,
5
+ 12
6
+ ],
7
+ [
8
+ 13,
9
+ 17
10
+ ],
11
+ [
12
+ 16,
13
+ 11
14
+ ],
15
+ [
16
+ 16,
17
+ 12
18
+ ],
19
+ [
20
+ 16,
21
+ 13
22
+ ],
23
+ [
24
+ 17,
25
+ 15
26
+ ],
27
+ [
28
+ 17,
29
+ 16
30
+ ],
31
+ [
32
+ 18,
33
+ 4
34
+ ],
35
+ [
36
+ 18,
37
+ 11
38
+ ],
39
+ [
40
+ 18,
41
+ 19
42
+ ],
43
+ [
44
+ 19,
45
+ 11
46
+ ],
47
+ [
48
+ 21,
49
+ 2
50
+ ],
51
+ [
52
+ 21,
53
+ 3
54
+ ],
55
+ [
56
+ 22,
57
+ 3
58
+ ],
59
+ [
60
+ 22,
61
+ 9
62
+ ],
63
+ [
64
+ 22,
65
+ 12
66
+ ],
67
+ [
68
+ 23,
69
+ 5
70
+ ],
71
+ [
72
+ 23,
73
+ 7
74
+ ],
75
+ [
76
+ 23,
77
+ 13
78
+ ],
79
+ [
80
+ 25,
81
+ 5
82
+ ],
83
+ [
84
+ 26,
85
+ 1
86
+ ],
87
+ [
88
+ 26,
89
+ 12
90
+ ],
91
+ [
92
+ 27,
93
+ 15
94
+ ]
95
+ ],
96
+ "begin_suppress_tokens": [
97
+ 220,
98
+ 50257
99
+ ],
100
+ "bos_token_id": 50257,
101
+ "decoder_start_token_id": 50258,
102
+ "eos_token_id": 50257,
103
+ "forced_decoder_ids": [
104
+ [
105
+ 1,
106
+ null
107
+ ],
108
+ [
109
+ 2,
110
+ 50359
111
+ ],
112
+ [
113
+ 3,
114
+ 50363
115
+ ]
116
+ ],
117
+ "is_multilingual": true,
118
+ "lang_to_id": {
119
+ "<|af|>": 50327,
120
+ "<|am|>": 50334,
121
+ "<|ar|>": 50272,
122
+ "<|as|>": 50350,
123
+ "<|az|>": 50304,
124
+ "<|ba|>": 50355,
125
+ "<|be|>": 50330,
126
+ "<|bg|>": 50292,
127
+ "<|bn|>": 50302,
128
+ "<|bo|>": 50347,
129
+ "<|br|>": 50309,
130
+ "<|bs|>": 50315,
131
+ "<|ca|>": 50270,
132
+ "<|cs|>": 50283,
133
+ "<|cy|>": 50297,
134
+ "<|da|>": 50285,
135
+ "<|de|>": 50261,
136
+ "<|el|>": 50281,
137
+ "<|en|>": 50259,
138
+ "<|es|>": 50262,
139
+ "<|et|>": 50307,
140
+ "<|eu|>": 50310,
141
+ "<|fa|>": 50300,
142
+ "<|fi|>": 50277,
143
+ "<|fo|>": 50338,
144
+ "<|fr|>": 50265,
145
+ "<|gl|>": 50319,
146
+ "<|gu|>": 50333,
147
+ "<|haw|>": 50352,
148
+ "<|ha|>": 50354,
149
+ "<|he|>": 50279,
150
+ "<|hi|>": 50276,
151
+ "<|hr|>": 50291,
152
+ "<|ht|>": 50339,
153
+ "<|hu|>": 50286,
154
+ "<|hy|>": 50312,
155
+ "<|id|>": 50275,
156
+ "<|is|>": 50311,
157
+ "<|it|>": 50274,
158
+ "<|ja|>": 50266,
159
+ "<|jw|>": 50356,
160
+ "<|ka|>": 50329,
161
+ "<|kk|>": 50316,
162
+ "<|km|>": 50323,
163
+ "<|kn|>": 50306,
164
+ "<|ko|>": 50264,
165
+ "<|la|>": 50294,
166
+ "<|lb|>": 50345,
167
+ "<|ln|>": 50353,
168
+ "<|lo|>": 50336,
169
+ "<|lt|>": 50293,
170
+ "<|lv|>": 50301,
171
+ "<|mg|>": 50349,
172
+ "<|mi|>": 50295,
173
+ "<|mk|>": 50308,
174
+ "<|ml|>": 50296,
175
+ "<|mn|>": 50314,
176
+ "<|mr|>": 50320,
177
+ "<|ms|>": 50282,
178
+ "<|mt|>": 50343,
179
+ "<|my|>": 50346,
180
+ "<|ne|>": 50313,
181
+ "<|nl|>": 50271,
182
+ "<|nn|>": 50342,
183
+ "<|no|>": 50288,
184
+ "<|oc|>": 50328,
185
+ "<|pa|>": 50321,
186
+ "<|pl|>": 50269,
187
+ "<|ps|>": 50340,
188
+ "<|pt|>": 50267,
189
+ "<|ro|>": 50284,
190
+ "<|ru|>": 50263,
191
+ "<|sa|>": 50344,
192
+ "<|sd|>": 50332,
193
+ "<|si|>": 50322,
194
+ "<|sk|>": 50298,
195
+ "<|sl|>": 50305,
196
+ "<|sn|>": 50324,
197
+ "<|so|>": 50326,
198
+ "<|sq|>": 50317,
199
+ "<|sr|>": 50303,
200
+ "<|su|>": 50357,
201
+ "<|sv|>": 50273,
202
+ "<|sw|>": 50318,
203
+ "<|ta|>": 50287,
204
+ "<|te|>": 50299,
205
+ "<|tg|>": 50331,
206
+ "<|th|>": 50289,
207
+ "<|tk|>": 50341,
208
+ "<|tl|>": 50348,
209
+ "<|tr|>": 50268,
210
+ "<|tt|>": 50351,
211
+ "<|uk|>": 50280,
212
+ "<|ur|>": 50290,
213
+ "<|uz|>": 50337,
214
+ "<|vi|>": 50278,
215
+ "<|yi|>": 50335,
216
+ "<|yo|>": 50325,
217
+ "<|zh|>": 50260
218
+ },
219
+ "max_initial_timestamp_index": 1,
220
+ "max_length": 448,
221
+ "no_timestamps_token_id": 50363,
222
+ "pad_token_id": 50257,
223
+ "return_timestamps": false,
224
+ "suppress_tokens": [
225
+ 1,
226
+ 2,
227
+ 7,
228
+ 8,
229
+ 9,
230
+ 10,
231
+ 14,
232
+ 25,
233
+ 26,
234
+ 27,
235
+ 28,
236
+ 29,
237
+ 31,
238
+ 58,
239
+ 59,
240
+ 60,
241
+ 61,
242
+ 62,
243
+ 63,
244
+ 90,
245
+ 91,
246
+ 92,
247
+ 93,
248
+ 359,
249
+ 503,
250
+ 522,
251
+ 542,
252
+ 873,
253
+ 893,
254
+ 902,
255
+ 918,
256
+ 922,
257
+ 931,
258
+ 1350,
259
+ 1853,
260
+ 1982,
261
+ 2460,
262
+ 2627,
263
+ 3246,
264
+ 3253,
265
+ 3268,
266
+ 3536,
267
+ 3846,
268
+ 3961,
269
+ 4183,
270
+ 4667,
271
+ 6585,
272
+ 6647,
273
+ 7273,
274
+ 9061,
275
+ 9383,
276
+ 10428,
277
+ 10929,
278
+ 11938,
279
+ 12033,
280
+ 12331,
281
+ 12562,
282
+ 13793,
283
+ 14157,
284
+ 14635,
285
+ 15265,
286
+ 15618,
287
+ 16553,
288
+ 16604,
289
+ 18362,
290
+ 18956,
291
+ 20075,
292
+ 21675,
293
+ 22520,
294
+ 26130,
295
+ 26161,
296
+ 26435,
297
+ 28279,
298
+ 29464,
299
+ 31650,
300
+ 32302,
301
+ 32470,
302
+ 36865,
303
+ 42863,
304
+ 47425,
305
+ 49870,
306
+ 50254,
307
+ 50258,
308
+ 50358,
309
+ 50359,
310
+ 50360,
311
+ 50361,
312
+ 50362
313
+ ],
314
+ "task_to_id": {
315
+ "transcribe": 50359,
316
+ "translate": 50358
317
+ },
318
+ "transformers_version": "4.34.0.dev0"
319
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
run.sh ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ python run_finetuning.py \
4
+ --model_name_or_path "openai/whisper-large-v2" \
5
+ --dataset_name "sanchit-gandhi/librispeech-data" \
6
+ --dataset_config_name "all" \
7
+ --train_split_name "train.clean.100+train.clean.360+train.other.500" \
8
+ --eval_split_name "validation.clean" \
9
+ --text_column_name "text" \
10
+ --cache_dir "/home/sanchitgandhi/cache" \
11
+ --dataset_cache_dir "/home/sanchitgandhi/cache" \
12
+ --output_dir "./" \
13
+ --wandb_name "large-v2-ft-ls" \
14
+ --wandb_dir "/home/sanchitgandhi/cache" \
15
+ --wandb_project "flax-whisper-librispeech" \
16
+ --per_device_train_batch_size 4 \
17
+ --per_device_eval_batch_size 16 \
18
+ --dtype "bfloat16" \
19
+ --optim "adafactor" \
20
+ --learning_rate 1e-4 \
21
+ --warmup_steps 500 \
22
+ --do_train \
23
+ --do_eval \
24
+ --num_train_epochs 10 \
25
+ --preprocessing_num_workers 16 \
26
+ --dataloader_num_workers 64 \
27
+ --logging_steps 25 \
28
+ --use_scan \
29
+ --gradient_checkpointing \
30
+ --overwrite_output_dir \
31
+ --predict_with_generate \
32
+ --push_to_hub
33
+
run_finetuning.py ADDED
@@ -0,0 +1,1111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the Whisper model for sequence to sequence speech recognition.
18
+ """
19
+ # You can also adapt this script for your own speech recognition task. Pointers for this are left as comments.
20
+
21
+ import logging
22
+ import os
23
+ import string
24
+ import sys
25
+ import time
26
+ from dataclasses import dataclass, field
27
+ from functools import partial
28
+ from pathlib import Path
29
+ from typing import Any, Callable, Dict, List, Optional, Union
30
+
31
+ import datasets
32
+ import evaluate
33
+ import flax
34
+ import jax
35
+ import jax.numpy as jnp
36
+ import numpy as np
37
+ import optax
38
+ import transformers
39
+ from datasets import Dataset, DatasetDict, load_dataset
40
+ from flax import jax_utils, traverse_util
41
+ from flax.jax_utils import pad_shard_unpad, unreplicate
42
+ from flax.training import train_state
43
+ from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
44
+ from huggingface_hub import Repository, create_repo
45
+ from torch.utils.data import DataLoader
46
+ from tqdm import tqdm
47
+ from transformers import (
48
+ AutoConfig,
49
+ AutoFeatureExtractor,
50
+ AutoProcessor,
51
+ AutoTokenizer,
52
+ HfArgumentParser,
53
+ Seq2SeqTrainingArguments,
54
+ is_tensorboard_available,
55
+ is_wandb_available,
56
+ )
57
+ from transformers.file_utils import get_full_repo_name
58
+ from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
59
+ from transformers.utils import check_min_version, send_example_telemetry
60
+ from transformers.utils.versions import require_version
61
+
62
+ from distil_whisper import FlaxWhisperForConditionalGeneration
63
+
64
+
65
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
66
+ check_min_version("4.27.0.dev0")
67
+
68
+ require_version(
69
+ "datasets>=1.18.0",
70
+ "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt",
71
+ )
72
+
73
+ logger = logging.getLogger(__name__)
74
+
75
+
76
+ @flax.struct.dataclass
77
+ class ModelArguments:
78
+ """
79
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
80
+ """
81
+
82
+ model_name_or_path: str = field(
83
+ metadata={"help": ("Path to pretrained model or model identifier from huggingface.co/models")}
84
+ )
85
+ config_name: Optional[str] = field(
86
+ default=None,
87
+ metadata={"help": "Pretrained config name or path if not the same as model_name"},
88
+ )
89
+ tokenizer_name: Optional[str] = field(
90
+ default=None,
91
+ metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
92
+ )
93
+ feature_extractor_name: Optional[str] = field(
94
+ default=None,
95
+ metadata={"help": "feature extractor name or path if not the same as model_name"},
96
+ )
97
+ cache_dir: Optional[str] = field(
98
+ default=None,
99
+ metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")},
100
+ )
101
+ use_fast_tokenizer: bool = field(
102
+ default=True,
103
+ metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")},
104
+ )
105
+ model_revision: str = field(
106
+ default="main",
107
+ metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")},
108
+ )
109
+ use_auth_token: bool = field(
110
+ default=False,
111
+ metadata={
112
+ "help": (
113
+ "Will use the token generated when running `transformers-cli login`"
114
+ " (necessary to use this script with private models)."
115
+ )
116
+ },
117
+ )
118
+ dtype: Optional[str] = field(
119
+ default="float32",
120
+ metadata={
121
+ "help": (
122
+ "Floating-point format in which the model weights should be initialized"
123
+ " and trained. Choose one of `[float32, float16, bfloat16]`."
124
+ )
125
+ },
126
+ )
127
+
128
+
129
+ @flax.struct.dataclass
130
+ class DataTrainingArguments:
131
+ """
132
+ Arguments pertaining to what data we are going to input our model for training and eval.
133
+ """
134
+
135
+ dataset_name: str = field(
136
+ default=None,
137
+ metadata={"help": "The name of the dataset to use (via the datasets library)."},
138
+ )
139
+ dataset_config_name: Optional[str] = field(
140
+ default=None,
141
+ metadata={"help": ("The configuration name of the dataset to use (via the datasets library).")},
142
+ )
143
+ dataset_cache_dir: Optional[str] = field(
144
+ default=None,
145
+ metadata={"help": "Path to cache directory for saving and loading datasets"},
146
+ )
147
+ overwrite_cache: bool = field(
148
+ default=False,
149
+ metadata={"help": "Overwrite the cached training and evaluation sets"},
150
+ )
151
+ preprocessing_num_workers: Optional[int] = field(
152
+ default=None,
153
+ metadata={"help": "The number of processes to use for the preprocessing."},
154
+ )
155
+ max_train_samples: Optional[int] = field(
156
+ default=None,
157
+ metadata={
158
+ "help": (
159
+ "For debugging purposes or quicker training, truncate the number of"
160
+ " training examples to this value if set."
161
+ )
162
+ },
163
+ )
164
+ max_eval_samples: Optional[int] = field(
165
+ default=None,
166
+ metadata={
167
+ "help": (
168
+ "For debugging purposes or quicker training, truncate the number of"
169
+ " evaluation examples to this value if set."
170
+ )
171
+ },
172
+ )
173
+ audio_column_name: str = field(
174
+ default="audio",
175
+ metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")},
176
+ )
177
+ text_column_name: str = field(
178
+ default="whisper_transcript",
179
+ metadata={
180
+ "help": (
181
+ "The name of the dataset column containing the text data. Defaults to"
182
+ " 'whisper_transcript'which is the pseudo-labelled Whisper"
183
+ " transcription data."
184
+ )
185
+ },
186
+ )
187
+ max_duration_in_seconds: float = field(
188
+ default=30.0,
189
+ metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")},
190
+ )
191
+ min_duration_in_seconds: float = field(
192
+ default=0.0,
193
+ metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")},
194
+ )
195
+ max_label_length: int = field(
196
+ default=128,
197
+ metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
198
+ )
199
+ pad_target_to_multiple_of: Optional[int] = field(
200
+ default=None,
201
+ metadata={
202
+ "help": (
203
+ "If set will pad the target sequence to a multiple of the provided"
204
+ " value. This is important to avoid triggering recompilations on TPU."
205
+ " If unspecified, will default to padding the targets to max length."
206
+ )
207
+ },
208
+ )
209
+ preprocessing_only: bool = field(
210
+ default=False,
211
+ metadata={
212
+ "help": (
213
+ "Whether to only do data preprocessing and skip training. This is"
214
+ " especially useful when data preprocessing errors out in distributed"
215
+ " training due to timeout. In this case, one should run the"
216
+ " preprocessing in a non-distributed setup with"
217
+ " `preprocessing_only=True` so that the cached datasets can"
218
+ " consequently be loaded in distributed training"
219
+ )
220
+ },
221
+ )
222
+ train_split_name: str = field(
223
+ default="train",
224
+ metadata={
225
+ "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
226
+ },
227
+ )
228
+ eval_split_name: str = field(
229
+ default="validation",
230
+ metadata={
231
+ "help": (
232
+ "The name of the evaluation data set split to use (via the datasets"
233
+ " library). Defaults to 'validation'"
234
+ )
235
+ },
236
+ )
237
+ wandb_project: str = field(
238
+ default="distil-whisper",
239
+ metadata={"help": "The name of the wandb project."},
240
+ )
241
+ wandb_name: str = field(
242
+ default=None,
243
+ metadata={"help": "The name of the wandb run."},
244
+ )
245
+ wandb_job_type: str = field(
246
+ default="distil-whisper",
247
+ metadata={"help": "The name of the wandb job type."},
248
+ )
249
+ wandb_dir: str = field(
250
+ default=None,
251
+ metadata={"help": "The absolute path to save the wandb logs."},
252
+ )
253
+ save_code_to_wandb: bool = field(
254
+ default=False,
255
+ metadata={
256
+ "help": (
257
+ "Whether to save main script to wandb. This is valuable for improving"
258
+ " experimentreproducibility and to diff code across experiments in"
259
+ " the UI."
260
+ )
261
+ },
262
+ )
263
+
264
+
265
+ @dataclass
266
+ class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments):
267
+ use_scan: Optional[bool] = field(
268
+ default=True,
269
+ metadata={
270
+ "help": (
271
+ "Whether or not to use `scan_with_axes` over the encoder and decoder"
272
+ " blocks. Using scan results in faster compile times and more efficient"
273
+ " memory use during training, since all of the layers in the"
274
+ " encoder/decoder are stacked, and we perform a lax.scan over the"
275
+ " stacked block to index each layer. However, it results in slower"
276
+ " inference time due to the overhead of stacking the layers this way."
277
+ " Thus, we always default to disabling scan for the inference step."
278
+ )
279
+ },
280
+ )
281
+ freeze_encoder: Optional[bool] = field(
282
+ default=False,
283
+ metadata={
284
+ "help": (
285
+ "Whether to freeze the entire encoder model. Only recommended when the"
286
+ " entire encoder has been copiedfrom the teacher model."
287
+ )
288
+ },
289
+ )
290
+
291
+
292
+ def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
293
+ """
294
+ Shift label ids one token to the right.
295
+ """
296
+ shifted_label_ids = np.zeros_like(label_ids)
297
+ shifted_label_ids[:, 1:] = label_ids[:, :-1]
298
+ shifted_label_ids[:, 0] = decoder_start_token_id
299
+
300
+ return shifted_label_ids
301
+
302
+
303
+ @flax.struct.dataclass
304
+ class FlaxDataCollatorSpeechSeq2SeqWithPadding:
305
+ """
306
+ Data collator that will dynamically pad the inputs received.
307
+ Args:
308
+ processor ([`Wav2Vec2Processor`])
309
+ The processor used for proccessing the data.
310
+ decoder_start_token_id (:obj: `int`)
311
+ The begin-of-sentence of the decoder.
312
+ input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
313
+ Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
314
+ among:
315
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
316
+ sequence if provided).
317
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
318
+ maximum acceptable input length for the model if that argument is not provided.
319
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
320
+ different lengths).
321
+ target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
322
+ Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
323
+ See above for details.
324
+ max_target_length (:obj:`int`, `optional`):
325
+ Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
326
+ """
327
+
328
+ processor: Any
329
+ decoder_start_token_id: int
330
+ input_padding: Union[bool, str] = "max_length"
331
+ target_padding: Union[bool, str] = "max_length"
332
+ max_target_length: Optional[int] = None
333
+
334
+ def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
335
+ # split inputs and labels since they have to be of different lengths and need
336
+ # different padding methods
337
+ model_input_name = self.processor.model_input_names[0]
338
+
339
+ # dataloader returns a list of features which we convert to a dict
340
+ input_features = {model_input_name: [feature[model_input_name] for feature in features]}
341
+ label_features = {"input_ids": [feature["labels"] for feature in features]}
342
+
343
+ # reformat list to dict and set to pytorch format
344
+ batch = self.processor.feature_extractor.pad(
345
+ input_features,
346
+ padding=self.input_padding,
347
+ return_tensors="np",
348
+ )
349
+
350
+ labels_batch = self.processor.tokenizer.pad(
351
+ label_features,
352
+ max_length=self.max_target_length,
353
+ padding=self.target_padding,
354
+ return_tensors="np",
355
+ )
356
+
357
+ # if bos token is appended in previous tokenization step,
358
+ # cut bos token here as it's append later anyways
359
+ labels = labels_batch["input_ids"]
360
+ if (labels[:, 0] == self.decoder_start_token_id).all().item():
361
+ labels = labels[:, 1:]
362
+ labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]
363
+
364
+ decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id)
365
+
366
+ # replace padding with -100 to ignore correctly when computing the loss
367
+ labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
368
+ labels = labels.filled(fill_value=-100)
369
+
370
+ batch["labels"] = labels
371
+ batch["decoder_input_ids"] = decoder_input_ids
372
+
373
+ return batch
374
+
375
+
376
+ def get_data_loader(
377
+ rng: jax.random.PRNGKey,
378
+ dataset: Dataset,
379
+ batch_size: int,
380
+ data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding,
381
+ shuffle: bool = True,
382
+ drop_last: bool = True,
383
+ dataloader_num_workers: int = 0,
384
+ pin_memory: bool = True,
385
+ ) -> DataLoader:
386
+ """
387
+ Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
388
+ and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
389
+
390
+ Args:
391
+ rng (List(int)): JAX rng for generating pseudo random numbers. Used if shuffling the dataset.
392
+ dataset (Dataset): dataset from which to load the data.
393
+ batch_size (int): how many samples per batch to load.
394
+ data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a
395
+ mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.
396
+ shuffle (bool, optional): set to `True` to have the batches reshuffled.
397
+ drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
398
+ if the dataset size is not divisible by the batch size. If ``False`` and
399
+ the size of dataset is not divisible by the batch size, then the last batch
400
+ will be smaller. (default: ``False``)
401
+ dataloader_num_workers (int, optional): how many subprocesses to use for data
402
+ loading. ``0`` means that the data will be loaded in the main process.
403
+ (default: ``0``)
404
+ pin_memory (bool, optional): If ``True``, the data loader will copy Tensors
405
+ into device/CUDA pinned memory before returning them. If your data elements
406
+ are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type,
407
+ see the example below.
408
+
409
+ """
410
+ if shuffle:
411
+ batch_idx = jax.random.permutation(rng, len(dataset))
412
+ batch_idx = np.asarray(batch_idx)
413
+ dataset = dataset.select(batch_idx)
414
+
415
+ data_loader = DataLoader(
416
+ dataset,
417
+ batch_size=batch_size,
418
+ drop_last=drop_last,
419
+ pin_memory=pin_memory,
420
+ collate_fn=data_collator,
421
+ num_workers=dataloader_num_workers,
422
+ )
423
+
424
+ return data_loader
425
+
426
+
427
+ class TrainState(train_state.TrainState):
428
+ dropout_rng: jnp.ndarray
429
+
430
+ def replicate(self):
431
+ return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
432
+
433
+
434
+ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step, logging_steps):
435
+ summary_writer.scalar("train/time", train_time, step)
436
+
437
+ train_metrics = get_metrics(train_metrics)
438
+ for key, vals in train_metrics.items():
439
+ steps_arr = np.arange(0, step, logging_steps)[-len(vals) :]
440
+ tag = f"train/{key}"
441
+ for i, val in enumerate(vals):
442
+ summary_writer.scalar(tag, val, steps_arr[i])
443
+
444
+ for metric_name, value in eval_metrics.items():
445
+ summary_writer.scalar(f"eval/{metric_name}", value, step)
446
+
447
+
448
+ def write_wandb_metric(wandb_logger, metrics, train_time, step, prefix):
449
+ log_metrics = {}
450
+ for k, v in metrics.items():
451
+ log_metrics[f"{prefix}/{k}"] = v
452
+ log_metrics[f"{prefix}/time"] = train_time
453
+ wandb_logger.log(log_metrics, step)
454
+
455
+
456
+ def write_wandb_pred(wandb_logger, pred_str, label_str, prefix="eval", num_lines=100):
457
+ # convert str data to a wandb compatible format
458
+ if num_lines < len(pred_str):
459
+ str_data = [[label_str[i], pred_str[i]] for i in range(num_lines)]
460
+ else:
461
+ str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))]
462
+ # log as a table with the appropriate headers
463
+ wandb_logger.log(
464
+ {f"{prefix}/predictions": wandb_logger.Table(columns=["label_str", "pred_str"], data=str_data)},
465
+ )
466
+
467
+
468
+ def create_learning_rate_fn(
469
+ num_train_steps: int, num_warmup_steps: int, learning_rate: float
470
+ ) -> Callable[[int], jnp.array]:
471
+ """Returns a linear warmup, linear_decay learning rate function."""
472
+ warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
473
+ decay_fn = optax.linear_schedule(
474
+ init_value=learning_rate,
475
+ end_value=0,
476
+ transition_steps=num_train_steps - num_warmup_steps,
477
+ )
478
+ schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
479
+ return schedule_fn
480
+
481
+
482
+ def main():
483
+ # 1. Parse input arguments
484
+ # See all possible arguments in src/transformers/training_args.py
485
+ # or by passing the --help flag to this script.
486
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
487
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments))
488
+
489
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
490
+ # If we pass only one argument to the script and it's the path to a json file,
491
+ # let's parse it to get our arguments.
492
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
493
+ else:
494
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
495
+
496
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
497
+ # information sent is the one passed as arguments along with your JAX/Flax versions.
498
+ send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax")
499
+
500
+ # 2. Setup logging
501
+ # Make one log on every process with the configuration for debugging.
502
+ logging.basicConfig(
503
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
504
+ datefmt="%m/%d/%Y %H:%M:%S",
505
+ handlers=[logging.StreamHandler(sys.stdout)],
506
+ )
507
+ # Set the verbosity to info of the Transformers logger.
508
+ # We only want one process per machine to log things on the screen.
509
+ logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
510
+ if jax.process_index() == 0:
511
+ datasets.utils.logging.set_verbosity_warning()
512
+ transformers.utils.logging.set_verbosity_info()
513
+ else:
514
+ datasets.utils.logging.set_verbosity_error()
515
+ transformers.utils.logging.set_verbosity_error()
516
+
517
+ logger.info("Training/evaluation parameters %s", training_args)
518
+
519
+ # Check the output dir is valid
520
+ if (
521
+ os.path.exists(training_args.output_dir)
522
+ and os.listdir(training_args.output_dir)
523
+ and training_args.do_train
524
+ and not training_args.overwrite_output_dir
525
+ ):
526
+ raise ValueError(
527
+ f"Output directory ({training_args.output_dir}) already exists and is not"
528
+ " empty.Use `--overwrite_output_dir` to overcome."
529
+ )
530
+
531
+ # Handle the repository creation
532
+ if training_args.push_to_hub:
533
+ if training_args.hub_model_id is None:
534
+ repo_name = get_full_repo_name(
535
+ Path(training_args.output_dir).absolute().name,
536
+ token=training_args.hub_token,
537
+ )
538
+ else:
539
+ repo_name = training_args.hub_model_id
540
+ create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
541
+ repo = Repository(
542
+ training_args.output_dir,
543
+ clone_from=repo_name,
544
+ token=training_args.hub_token,
545
+ )
546
+
547
+ # 3. Load dataset
548
+ raw_datasets = DatasetDict()
549
+
550
+ if training_args.do_train:
551
+ raw_datasets["train"] = load_dataset(
552
+ data_args.dataset_name,
553
+ data_args.dataset_config_name,
554
+ split=data_args.train_split_name,
555
+ cache_dir=data_args.dataset_cache_dir,
556
+ use_auth_token=True if model_args.use_auth_token else None,
557
+ num_proc=data_args.preprocessing_num_workers,
558
+ )
559
+
560
+ if training_args.do_eval:
561
+ raw_datasets["eval"] = load_dataset(
562
+ data_args.dataset_name,
563
+ data_args.dataset_config_name,
564
+ split=data_args.eval_split_name,
565
+ cache_dir=data_args.dataset_cache_dir,
566
+ use_auth_token=True if model_args.use_auth_token else None,
567
+ num_proc=data_args.preprocessing_num_workers,
568
+ )
569
+
570
+ if not training_args.do_train and not training_args.do_eval:
571
+ raise ValueError(
572
+ "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
573
+ )
574
+
575
+ if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
576
+ raise ValueError(
577
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset"
578
+ f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to"
579
+ " the correct audio column - one of"
580
+ f" {', '.join(next(iter(raw_datasets.values())).column_names)}."
581
+ )
582
+
583
+ if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
584
+ raise ValueError(
585
+ f"--text_column_name {data_args.text_column_name} not found in dataset"
586
+ f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the"
587
+ " correct text column - one of"
588
+ f" {', '.join(next(iter(raw_datasets.values())).column_names)}."
589
+ )
590
+
591
+ # 5. Load pretrained model, tokenizer, and feature extractor
592
+ config = AutoConfig.from_pretrained(
593
+ (model_args.config_name if model_args.config_name else model_args.model_name_or_path),
594
+ cache_dir=model_args.cache_dir,
595
+ revision=model_args.model_revision,
596
+ use_auth_token=True if model_args.use_auth_token else None,
597
+ )
598
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
599
+ (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
600
+ cache_dir=model_args.cache_dir,
601
+ revision=model_args.model_revision,
602
+ use_auth_token=True if model_args.use_auth_token else None,
603
+ )
604
+ tokenizer = AutoTokenizer.from_pretrained(
605
+ (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
606
+ cache_dir=model_args.cache_dir,
607
+ use_fast=model_args.use_fast_tokenizer,
608
+ revision=model_args.model_revision,
609
+ use_auth_token=True if model_args.use_auth_token else None,
610
+ )
611
+
612
+ model, params = FlaxWhisperForConditionalGeneration.from_pretrained(
613
+ model_args.model_name_or_path,
614
+ config=config,
615
+ dtype=getattr(jnp, model_args.dtype),
616
+ cache_dir=model_args.cache_dir,
617
+ revision=model_args.model_revision,
618
+ use_auth_token=True if model_args.use_auth_token else None,
619
+ _do_init=False,
620
+ )
621
+
622
+ if model.config.decoder_start_token_id is None:
623
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
624
+
625
+ # enable scan / gradient checkpointing if necessary
626
+ if training_args.use_scan:
627
+ model.enable_scan() # to enable scan in the nn.Module
628
+ params = model.convert_unroll_to_scan(params) # to convert the unrolled params to scan
629
+
630
+ if training_args.gradient_checkpointing:
631
+ model.enable_gradient_checkpointing() # to enable checkpointing in the nn.Module, there is no change to the params structure
632
+
633
+ if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual:
634
+ # We need to set the language and task ids for previously multilingual checkpoints
635
+ tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=False)
636
+ model.generation_config.forced_decoder_ids = tokenizer.get_decoder_prompt_ids(
637
+ language="English", task="transcribe", no_timestamps=True
638
+ )
639
+
640
+ # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
641
+ # so we just need to set the correct target sampling rate.
642
+ raw_datasets = raw_datasets.cast_column(
643
+ data_args.audio_column_name,
644
+ datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
645
+ )
646
+
647
+ # 7. Preprocessing the datasets.
648
+ # We need to read the audio files as arrays and tokenize the targets.
649
+ max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
650
+ min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
651
+ max_label_length = (
652
+ data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length
653
+ )
654
+ audio_column_name = data_args.audio_column_name
655
+ num_workers = data_args.preprocessing_num_workers
656
+ dataloader_num_workers = training_args.dataloader_num_workers
657
+ text_column_name = data_args.text_column_name
658
+ model_input_name = feature_extractor.model_input_names[0]
659
+ normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
660
+
661
+ if training_args.do_train and data_args.max_train_samples is not None:
662
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
663
+
664
+ if training_args.do_eval and data_args.max_eval_samples is not None:
665
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
666
+
667
+ def prepare_dataset(batch):
668
+ # process audio
669
+ sample = batch[audio_column_name]
670
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
671
+ # process audio length
672
+ batch[model_input_name] = inputs.get(model_input_name)[0]
673
+ batch["input_length"] = len(sample["array"])
674
+
675
+ # process targets
676
+ input_str = " " + batch[text_column_name].lower()
677
+ batch["labels"] = tokenizer(input_str).input_ids
678
+ return batch
679
+
680
+ vectorized_datasets = raw_datasets.map(
681
+ prepare_dataset,
682
+ remove_columns=next(iter(raw_datasets.values())).column_names,
683
+ num_proc=num_workers,
684
+ desc="preprocess train dataset",
685
+ )
686
+
687
+ # filter training data with inputs longer than max_input_length
688
+ def is_audio_in_length_range(length):
689
+ return min_input_length < length < max_input_length
690
+
691
+ vectorized_datasets = vectorized_datasets.filter(
692
+ is_audio_in_length_range,
693
+ num_proc=num_workers,
694
+ input_columns=["input_length"],
695
+ )
696
+
697
+ # filter training data with labels longer than max_label_length
698
+ def is_labels_in_length_range(labels):
699
+ return 0 < len(labels) < max_label_length
700
+
701
+ vectorized_datasets = vectorized_datasets.filter(
702
+ is_labels_in_length_range,
703
+ num_proc=num_workers,
704
+ input_columns=["labels"],
705
+ )
706
+
707
+ # for large datasets it is advised to run the preprocessing on a
708
+ # single machine first with `args.preprocessing_only` since there will mostly likely
709
+ # be a timeout when running the script in distributed mode.
710
+ # In a second step `args.preprocessing_only` can then be set to `False` to load the
711
+ # cached dataset
712
+ if data_args.preprocessing_only:
713
+ cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
714
+ logger.info(f"Data preprocessing finished. Files cached at {cache}.")
715
+ return
716
+
717
+ # 8. Load Metric
718
+ metric = evaluate.load("wer")
719
+ all_punctuation = list(string.punctuation.replace("'", ""))
720
+
721
+ def compute_metrics(preds, labels):
722
+ # replace padded labels by the padding token
723
+ for idx in range(len(labels)):
724
+ labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
725
+
726
+ pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True)
727
+ # we do not want to group tokens when computing the metrics
728
+ label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
729
+
730
+ # space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352)
731
+ spaced_pred_str = [
732
+ pred_str[i].replace(punctuation, "") for punctuation in all_punctuation for i in range(len(pred_str))
733
+ ]
734
+ spaced_label_str = [
735
+ label_str[i].replace(punctuation, "") for punctuation in all_punctuation for i in range(len(label_str))
736
+ ]
737
+ wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str)
738
+
739
+ # normalize everything and re-compute the WER
740
+ norm_pred_str = [normalizer(pred) for pred in pred_str]
741
+ norm_label_str = [normalizer(label) for label in label_str]
742
+ # filtering step to only evaluate the samples that correspond to non-zero normalized references:
743
+ norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
744
+ norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
745
+
746
+ wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
747
+
748
+ return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str
749
+
750
+ # 9. Save feature extractor, tokenizer, config and generation config
751
+ feature_extractor.save_pretrained(training_args.output_dir)
752
+ tokenizer.save_pretrained(training_args.output_dir)
753
+ config.save_pretrained(training_args.output_dir)
754
+ model.generation_config.save_pretrained(
755
+ training_args.output_dir
756
+ ) # generation config stays bound to model to make it easy to jit
757
+
758
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
759
+
760
+ data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
761
+ processor=processor,
762
+ decoder_start_token_id=model.config.decoder_start_token_id,
763
+ input_padding="longest",
764
+ target_padding="max_length",
765
+ max_target_length=max_label_length,
766
+ )
767
+
768
+ # Enable tensorboard only on the master node
769
+ has_tensorboard = is_tensorboard_available()
770
+ if has_tensorboard and jax.process_index() == 0:
771
+ try:
772
+ from flax.metrics.tensorboard import SummaryWriter
773
+
774
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
775
+ except ImportError as ie:
776
+ has_tensorboard = False
777
+ logger.warning(
778
+ "Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}"
779
+ )
780
+ else:
781
+ logger.warning(
782
+ "Unable to display metrics through TensorBoard because the package is not"
783
+ " installed: Please run `pip install tensorboard` to enable."
784
+ )
785
+
786
+ # Enable wandb only on the master node
787
+ has_wandb = is_wandb_available()
788
+ if has_wandb:
789
+ import wandb as wandb_logger
790
+
791
+ # Set up wandb run
792
+ if jax.process_index() == 0:
793
+ wandb_logger.init(
794
+ project=data_args.wandb_project,
795
+ name=data_args.wandb_name,
796
+ job_type=data_args.wandb_job_type,
797
+ dir=data_args.wandb_dir,
798
+ save_code=data_args.save_code_to_wandb,
799
+ )
800
+ else:
801
+ logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")
802
+
803
+ # Initialize our training
804
+ rng = jax.random.PRNGKey(training_args.seed)
805
+ rng, dropout_rng = jax.random.split(rng)
806
+
807
+ # Store some constant
808
+ num_epochs = int(training_args.num_train_epochs)
809
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
810
+ per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
811
+ eval_batch_size = per_device_eval_batch_size * jax.device_count()
812
+ steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size
813
+ total_train_steps = steps_per_epoch * num_epochs
814
+
815
+ # Create learning rate schedule
816
+ linear_decay_lr_schedule_fn = create_learning_rate_fn(
817
+ total_train_steps,
818
+ training_args.warmup_steps,
819
+ training_args.learning_rate,
820
+ )
821
+
822
+ # We use Optax's "masking" functionality to not apply weight decay
823
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
824
+ # mask boolean with the same structure as the parameters.
825
+ # The mask is True for parameters that should be decayed.
826
+ def decay_mask_fn(params):
827
+ flat_params = traverse_util.flatten_dict(params)
828
+ # find out all LayerNorm parameters
829
+ layer_norm_candidates = [
830
+ "layer_norm",
831
+ "self_attn_layer_norm",
832
+ "final_layer_norm",
833
+ "encoder_attn_layer_norm",
834
+ ]
835
+ layer_norm_named_params = {
836
+ layer[-2:]
837
+ for layer_norm_name in layer_norm_candidates
838
+ for layer in flat_params.keys()
839
+ if layer_norm_name in "".join(layer).lower()
840
+ }
841
+ flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params}
842
+ return traverse_util.unflatten_dict(flat_mask)
843
+
844
+ # create adam optimizer
845
+ if "adam" in training_args.optim:
846
+ optim = optax.adamw(
847
+ learning_rate=linear_decay_lr_schedule_fn,
848
+ b1=training_args.adam_beta1,
849
+ b2=training_args.adam_beta2,
850
+ eps=training_args.adam_epsilon,
851
+ weight_decay=training_args.weight_decay,
852
+ mask=decay_mask_fn,
853
+ )
854
+ elif training_args.optim == "adafactor":
855
+ optim = optax.adafactor(
856
+ learning_rate=linear_decay_lr_schedule_fn,
857
+ dtype_momentum=getattr(jnp, model_args.dtype),
858
+ eps=training_args.adam_epsilon,
859
+ weight_decay_rate=training_args.weight_decay,
860
+ weight_decay_mask=decay_mask_fn,
861
+ )
862
+ else:
863
+ raise ValueError(f"Got unknown optmiser {training_args.optim}. Should be one of `adamw` or `adafactor`")
864
+
865
+ # Setup train state
866
+ state = TrainState.create(apply_fn=model.__call__, params=params, tx=optim, dropout_rng=dropout_rng)
867
+
868
+ # label smoothed cross entropy
869
+ def loss_fn(logits, labels, label_smoothing_factor=0.0):
870
+ """
871
+ The label smoothing implementation is adapted from Flax's official example:
872
+ https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
873
+ """
874
+ vocab_size = logits.shape[-1]
875
+ confidence = 1.0 - label_smoothing_factor
876
+ low_confidence = (1.0 - confidence) / (vocab_size - 1)
877
+ normalizing_constant = -(
878
+ confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
879
+ )
880
+ soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
881
+
882
+ loss = optax.softmax_cross_entropy(logits, soft_labels)
883
+ loss = loss - normalizing_constant
884
+
885
+ # ignore padded tokens from loss, i.e. where labels are not set to -100
886
+ padding_mask = labels >= 0
887
+ loss = loss * padding_mask
888
+ loss = loss.sum()
889
+ num_labels = padding_mask.sum()
890
+ return loss, num_labels
891
+
892
+ # Define gradient update step fn
893
+ def train_step(state, batch, freeze_encoder, label_smoothing_factor=0.0):
894
+ dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
895
+
896
+ def compute_loss(params):
897
+ labels = batch.pop("labels")
898
+ logits = state.apply_fn(
899
+ **batch,
900
+ params=params,
901
+ dropout_rng=dropout_rng,
902
+ freeze_encoder=freeze_encoder,
903
+ train=True,
904
+ )[0]
905
+ loss, num_labels = loss_fn(logits, labels, label_smoothing_factor)
906
+ return loss, num_labels
907
+
908
+ grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
909
+ (loss, num_labels), grad = grad_fn(state.params)
910
+ num_labels = jax.lax.psum(num_labels, "batch")
911
+
912
+ # true loss = total loss / total samples
913
+ loss = jax.lax.psum(loss, "batch")
914
+ loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
915
+
916
+ # true grad = total grad / total samples
917
+ grad = jax.lax.psum(grad, "batch")
918
+ grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
919
+ new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
920
+
921
+ metrics = {
922
+ "loss": loss,
923
+ "learning_rate": linear_decay_lr_schedule_fn(state.step),
924
+ }
925
+ return new_state, metrics
926
+
927
+ # Define eval fn
928
+ def eval_step(params, batch, label_smoothing_factor=0.0):
929
+ labels = batch.pop("labels")
930
+ logits = model(**batch, params=params, train=False)[0]
931
+
932
+ loss, num_labels = loss_fn(logits, labels, label_smoothing_factor)
933
+ num_labels = jax.lax.psum(num_labels, "batch")
934
+
935
+ # true loss = total loss / total samples
936
+ loss = jax.lax.psum(loss, "batch")
937
+ loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
938
+
939
+ metrics = {"loss": loss}
940
+ return metrics
941
+
942
+ # Define generation function
943
+ num_beams = (
944
+ training_args.generation_num_beams
945
+ if training_args.generation_num_beams is not None
946
+ else model.config.num_beams
947
+ )
948
+ gen_kwargs = {"max_length": max_label_length, "num_beams": num_beams}
949
+
950
+ def generate_step(params, batch):
951
+ output_ids = model.generate(
952
+ batch[model_input_name],
953
+ attention_mask=batch.get("attention_mask"),
954
+ params=params,
955
+ **gen_kwargs,
956
+ )
957
+ return output_ids.sequences
958
+
959
+ # Create parallel version of the train and eval step
960
+ p_train_step = jax.pmap(
961
+ partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor),
962
+ "batch",
963
+ donate_argnums=(0,),
964
+ static_broadcasted_argnums=(2,),
965
+ )
966
+ p_eval_step = jax.pmap(
967
+ partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor),
968
+ "batch",
969
+ )
970
+ p_generate_step = jax.pmap(generate_step, "batch")
971
+
972
+ # Replicate the train state on each device
973
+ state = state.replicate()
974
+
975
+ logger.info("***** Running training *****")
976
+ logger.info(f" Num examples = {len(vectorized_datasets['train'])}")
977
+ logger.info(f" Num Epochs = {num_epochs}")
978
+ logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
979
+ logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
980
+ logger.info(f" Total optimization steps = {total_train_steps}")
981
+
982
+ train_time = 0
983
+ epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
984
+ for epoch in epochs:
985
+ # ======================== Training ================================
986
+ train_start = time.time()
987
+
988
+ # Create sampling rng
989
+ rng, input_rng = jax.random.split(rng)
990
+ train_metrics = []
991
+
992
+ # Generate an epoch by shuffling sampling indices from the train dataset
993
+ train_loader = get_data_loader(
994
+ input_rng,
995
+ vectorized_datasets["train"],
996
+ batch_size=train_batch_size,
997
+ data_collator=data_collator,
998
+ dataloader_num_workers=dataloader_num_workers,
999
+ )
1000
+ # train
1001
+ for step, batch in enumerate(tqdm(train_loader, desc="Training...", position=1), 1):
1002
+ batch = shard(batch.data)
1003
+ state, train_metric = p_train_step(state, batch, training_args.freeze_encoder)
1004
+
1005
+ cur_step = epoch * steps_per_epoch + step
1006
+ if cur_step % training_args.logging_steps == 0:
1007
+ train_metrics.append(train_metric)
1008
+ train_metric_to_write = unreplicate(train_metric)
1009
+ epochs.write(
1010
+ f"Step... ({cur_step} / {total_train_steps} | Loss:"
1011
+ f" {train_metric_to_write['loss']}, Learning Rate:"
1012
+ f" {train_metric_to_write['learning_rate']})"
1013
+ )
1014
+ if has_wandb and jax.process_index() == 0:
1015
+ write_wandb_metric(
1016
+ wandb_logger,
1017
+ train_metric_to_write,
1018
+ train_time + time.time() - train_start,
1019
+ cur_step,
1020
+ "train",
1021
+ )
1022
+
1023
+ train_time += time.time() - train_start
1024
+
1025
+ train_metric = unreplicate(train_metric)
1026
+
1027
+ epochs.write(
1028
+ f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']},"
1029
+ f" Learning Rate: {train_metric['learning_rate']})"
1030
+ )
1031
+
1032
+ # ======================== Evaluating ==============================
1033
+ eval_metrics = []
1034
+ eval_preds = []
1035
+ eval_labels = []
1036
+ eval_start = time.time()
1037
+
1038
+ eval_loader = get_data_loader(
1039
+ input_rng,
1040
+ vectorized_datasets["eval"],
1041
+ batch_size=eval_batch_size,
1042
+ data_collator=data_collator,
1043
+ shuffle=False,
1044
+ drop_last=False,
1045
+ dataloader_num_workers=dataloader_num_workers,
1046
+ )
1047
+ for batch in tqdm(eval_loader, desc="Evaluating...", position=2):
1048
+ # Model forward
1049
+ labels = batch["labels"]
1050
+
1051
+ metrics = pad_shard_unpad(p_eval_step, static_return=True)(
1052
+ state.params, batch.data, min_device_batch=per_device_eval_batch_size
1053
+ )
1054
+ eval_metrics.append(metrics)
1055
+
1056
+ # generation
1057
+ if training_args.predict_with_generate:
1058
+ generated_ids = pad_shard_unpad(p_generate_step)(
1059
+ state.params, batch.data, min_device_batch=per_device_eval_batch_size
1060
+ )
1061
+ eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
1062
+ eval_labels.extend(labels)
1063
+
1064
+ eval_time = time.time() - eval_start
1065
+
1066
+ # normalize eval metrics
1067
+ eval_metrics = get_metrics(eval_metrics)
1068
+ eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
1069
+
1070
+ # compute WER metric
1071
+ wer_desc = ""
1072
+ if training_args.predict_with_generate:
1073
+ wer_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels)
1074
+ eval_metrics.update(wer_metric)
1075
+ wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
1076
+
1077
+ # Print metrics and update progress bar
1078
+ desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} |" f" {wer_desc})"
1079
+ epochs.write(desc)
1080
+ epochs.desc = desc
1081
+
1082
+ # Save metrics
1083
+ if has_tensorboard and jax.process_index() == 0:
1084
+ write_metric(
1085
+ summary_writer,
1086
+ train_metrics,
1087
+ eval_metrics,
1088
+ train_time,
1089
+ cur_step,
1090
+ training_args.logging_steps,
1091
+ )
1092
+
1093
+ if has_wandb and jax.process_index() == 0:
1094
+ write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, "eval")
1095
+ if training_args.predict_with_generate:
1096
+ write_wandb_pred(wandb_logger, pred_str, label_str)
1097
+
1098
+ # save checkpoint after each epoch and push checkpoint to the hub
1099
+ if jax.process_index() == 0:
1100
+ params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
1101
+ model.save_pretrained(training_args.output_dir, params=params)
1102
+ tokenizer.save_pretrained(training_args.output_dir)
1103
+ if training_args.push_to_hub:
1104
+ repo.push_to_hub(
1105
+ commit_message=f"Saving weights and logs of epoch {epoch + 1}",
1106
+ blocking=False,
1107
+ )
1108
+
1109
+
1110
+ if __name__ == "__main__":
1111
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": "<|endoftext|>",
112
+ "eos_token": "<|endoftext|>",
113
+ "pad_token": "<|endoftext|>",
114
+ "unk_token": "<|endoftext|>"
115
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff