File size: 2,005 Bytes
4dad25d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: mit
base_model: nlptown/bert-base-multilingual-uncased-sentiment
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
- f1
model-index:
- name: amazon-reviews-finetuning-bert-base-sentiment
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: amazon_reviews_multi
      type: amazon_reviews_multi
      config: en
      split: validation
      args: en
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5764
    - name: F1
      type: f1
      value: 0.5738591890717804
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# amazon-reviews-finetuning-bert-base-sentiment

This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0136
- Accuracy: 0.5764
- F1: 0.5739

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.9867        | 1.0   | 1563 | 0.9814          | 0.5792   | 0.5677 |
| 0.8435        | 2.0   | 3126 | 1.0136          | 0.5764   | 0.5739 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.0
- Datasets 2.14.6.dev0
- Tokenizers 0.13.3