nreimers
commited on
Commit
·
df610d6
1
Parent(s):
a184427
Add new SentenceTransformer model.
Browse files- 0_WordEmbeddings/pytorch_model.bin +3 -0
- 0_WordEmbeddings/whitespacetokenizer_config.json +0 -0
- 0_WordEmbeddings/wordembedding_config.json +5 -0
- 1_Pooling/config.json +7 -0
- README.md +69 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
0_WordEmbeddings/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59a6786b75bd5f6d50702b59bb99bfd98b0f24cb51d980c2bd62d6d97793479f
|
3 |
+
size 266766827
|
0_WordEmbeddings/whitespacetokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
0_WordEmbeddings/wordembedding_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "sentence_transformers.models.tokenizer.WhitespaceTokenizer.WhitespaceTokenizer",
|
3 |
+
"update_embeddings": false,
|
4 |
+
"max_seq_length": 1000000
|
5 |
+
}
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 300,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
---
|
8 |
+
|
9 |
+
# sentence-transformers/average_word_embeddings_komninos
|
10 |
+
|
11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('sentence-transformers/average_word_embeddings_komninos')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Evaluation Results
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/average_word_embeddings_komninos)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
## Full Model Architecture
|
45 |
+
```
|
46 |
+
SentenceTransformer(
|
47 |
+
(0): WordEmbeddings(
|
48 |
+
(emb_layer): Embedding(222305, 300)
|
49 |
+
)
|
50 |
+
(1): Pooling({'word_embedding_dimension': 300, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
51 |
+
)
|
52 |
+
```
|
53 |
+
|
54 |
+
## Citing & Authors
|
55 |
+
|
56 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
57 |
+
|
58 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
59 |
+
```bibtex
|
60 |
+
@inproceedings{reimers-2019-sentence-bert,
|
61 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
62 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
63 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
64 |
+
month = "11",
|
65 |
+
year = "2019",
|
66 |
+
publisher = "Association for Computational Linguistics",
|
67 |
+
url = "http://arxiv.org/abs/1908.10084",
|
68 |
+
}
|
69 |
+
```
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "0_WordEmbeddings",
|
6 |
+
"type": "sentence_transformers.models.WordEmbeddings"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|