Tom Aarsen
commited on
Commit
·
e30d07f
1
Parent(s):
08c012b
Add MRL results and usage
Browse files
README.md
CHANGED
@@ -997,7 +997,11 @@ model-index:
|
|
997 |
|
998 |
# Static Embeddings with BERT uncased tokenizer finetuned on various datasets
|
999 |
|
1000 |
-
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq), [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1), [squad](https://huggingface.co/datasets/sentence-transformers/squad), [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc), [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli), [paq](https://huggingface.co/datasets/sentence-transformers/paq), [trivia_qa](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [msmarco_10m](https://huggingface.co/datasets/bclavie/msmarco-10m-triplets), [swim_ir](https://huggingface.co/datasets/nthakur/swim-ir-monolingual), [pubmedqa](https://huggingface.co/datasets/sentence-transformers/pubmedqa), [miracl](https://huggingface.co/datasets/sentence-transformers/miracl), [mldr](https://huggingface.co/datasets/sentence-transformers/mldr) and [mr_tydi](https://huggingface.co/datasets/sentence-transformers/mr-tydi) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and
|
|
|
|
|
|
|
|
|
1001 |
|
1002 |
## Model Details
|
1003 |
|
@@ -1072,6 +1076,21 @@ print(similarities.shape)
|
|
1072 |
# [3, 3]
|
1073 |
```
|
1074 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1075 |
<!--
|
1076 |
### Direct Usage (Transformers)
|
1077 |
|
@@ -1146,6 +1165,17 @@ You can finetune this model on your own dataset.
|
|
1146 |
| cosine_mrr@10 | 0.5482 |
|
1147 |
| cosine_map@100 | 0.4203 |
|
1148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1149 |
<!--
|
1150 |
## Bias, Risks and Limitations
|
1151 |
|
|
|
997 |
|
998 |
# Static Embeddings with BERT uncased tokenizer finetuned on various datasets
|
999 |
|
1000 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq), [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1), [squad](https://huggingface.co/datasets/sentence-transformers/squad), [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc), [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli), [paq](https://huggingface.co/datasets/sentence-transformers/paq), [trivia_qa](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [msmarco_10m](https://huggingface.co/datasets/bclavie/msmarco-10m-triplets), [swim_ir](https://huggingface.co/datasets/nthakur/swim-ir-monolingual), [pubmedqa](https://huggingface.co/datasets/sentence-transformers/pubmedqa), [miracl](https://huggingface.co/datasets/sentence-transformers/miracl), [mldr](https://huggingface.co/datasets/sentence-transformers/mldr) and [mr_tydi](https://huggingface.co/datasets/sentence-transformers/mr-tydi) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and is designed to be used for semantic search.
|
1001 |
+
|
1002 |
+
This model was trained with a [Matryoshka loss](https://huggingface.co/blog/matryoshka), allowing you to truncate the embeddings for faster retrieval at minimal performance costs (See [Matryoshka Evaluations](#matryoshka-evaluations) for evaluations).
|
1003 |
+
|
1004 |
+
|
1005 |
|
1006 |
## Model Details
|
1007 |
|
|
|
1076 |
# [3, 3]
|
1077 |
```
|
1078 |
|
1079 |
+
This model was trained with Matryoshka loss, allowing this model to be used with lower dimensionalities with minimal performance loss (See [Matryoshka Evaluations](#matryoshka-evaluations) for evaluations).
|
1080 |
+
Notably, a lower dimensionality allows for much faster and cheaper information retrieval. You can specify a lower dimensionality with the `truncate_dim` argument when initializing the Sentence Transformer model:
|
1081 |
+
|
1082 |
+
```python
|
1083 |
+
from sentence_transformers import SentenceTransformer
|
1084 |
+
|
1085 |
+
model = SentenceTransformer("tomaarsen/static-retrieval-mrl-en-v1", truncate_dim=256)
|
1086 |
+
embeddings = model.encode([
|
1087 |
+
"what is the difference between chronological order and spatial order?",
|
1088 |
+
"can lavender grow indoors?"
|
1089 |
+
])
|
1090 |
+
print(embeddings.shape)
|
1091 |
+
# => (2, 256)
|
1092 |
+
```
|
1093 |
+
|
1094 |
<!--
|
1095 |
### Direct Usage (Transformers)
|
1096 |
|
|
|
1165 |
| cosine_mrr@10 | 0.5482 |
|
1166 |
| cosine_map@100 | 0.4203 |
|
1167 |
|
1168 |
+
##### Matryoshka Evaluations
|
1169 |
+
|
1170 |
+
| Dimensionality | NanoBEIR_mean | NanoArguAna | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoSciFact | NanoTouche2020 |
|
1171 |
+
|----------------|---------------|-------------|------------------|-------------|-----------|--------------|--------------|-------------|--------------|--------|--------------------|-------------|-------------|----------------|
|
1172 |
+
| 1024 | **0.5031** | 0.4077 | 0.3308 | 0.5681 | 0.6921 | 0.3651 | 0.6547 | 0.4040 | 0.3241 | 0.4533 | 0.8950 | 0.2642 | 0.6111 | 0.5702 |
|
1173 |
+
| 512 | **0.4957** | 0.3878 | 0.3360 | 0.5626 | 0.6945 | 0.3517 | 0.6280 | 0.3892 | 0.3206 | 0.4505 | 0.8986 | 0.2657 | 0.5953 | 0.5635 |
|
1174 |
+
| 256 | **0.4819** | 0.3855 | 0.3203 | 0.5407 | 0.6734 | 0.3518 | 0.6027 | 0.4144 | 0.2860 | 0.4254 | 0.8948 | 0.2466 | 0.5620 | 0.5605 |
|
1175 |
+
| 128 | **0.4622** | 0.4001 | 0.2982 | 0.5266 | 0.6273 | 0.3188 | 0.5606 | 0.4025 | 0.2693 | 0.4021 | 0.8930 | 0.2283 | 0.5447 | 0.5368 |
|
1176 |
+
| 64 | **0.4176** | 0.3424 | 0.2809 | 0.5022 | 0.5480 | 0.2831 | 0.4680 | 0.3739 | 0.2153 | 0.3845 | 0.8525 | 0.1680 | 0.5045 | 0.5050 |
|
1177 |
+
| 32 | **0.3532** | 0.2866 | 0.1870 | 0.4292 | 0.4193 | 0.2292 | 0.3602 | 0.3587 | 0.1444 | 0.3525 | 0.8325 | 0.1525 | 0.3983 | 0.4408 |
|
1178 |
+
|
1179 |
<!--
|
1180 |
## Bias, Risks and Limitations
|
1181 |
|