File size: 149,181 Bytes
6501536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae9c8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
---
language:
- en
- multilingual
- ar
- bg
- ca
- cs
- da
- de
- el
- es
- et
- fa
- fi
- fr
- gl
- gu
- he
- hi
- hu
- hy
- id
- it
- ja
- ka
- ko
- ku
- lt
- lv
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- th
- tr
- uk
- ur
- vi
- zh
- hr
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:62698210
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A man is jumping unto his filthy bed.
  sentences:
  - A man is ouside near the beach.
  - The bed is dirty.
  - The man is on the moon.
- source_sentence: Ship Simulator (video game)
  sentences:
  - ಯಂತ್ರ ಕಲಿಕೆ
  - Ship Simulator
  - جان بابتيست لويس بيير
- source_sentence: And so was the title of his book on the Israeli massacre of Gaza
    in 2008-2009.
  sentences:
  - Antony Lowenstein ist ein bekannter Blogger über den Nahen Osten.
  - Y ese fue el título de su libro sobre la masacre israelí de Gaza entre 2008 y
    2009.
  - 'C''était au temps où vous ne pouviez pas avoir un film de Nollywood qui n''incluait
    pas un ou une combinaison des aspects suivants: fraude, gris-gris/sorcellerie,
    vol à main armée, inceste, adultère, cannibalisme et, naturellement notre sujet
    favori, la corruption.'
- source_sentence: In fact, it contributes more than 12 percent to Thailand’s GDP.
  sentences:
  - Einige Provider folgten der Anordnung, aber „Fitna“ konnte noch über andere Anbieter
    angesehen werden.
  - En fait, il représente plus de 12% du produit national brut thaïlandais.
  - '"Aber von heute an...heute ist der Anfang eines neuen Lebens für mich."'
- source_sentence: It is known for its dry red chili powder .
  sentences:
  - These monsters will move in large groups .
  - It is popular for dry red chili powder .
  - In a statistical overview derived from writings by and about William George Aston
    , OCLC/WorldCat includes roughly 90 + works in 200 + publications in 4 languages
    and 3,000 + library holdings .
datasets:
- sentence-transformers/parallel-sentences-wikititles
- sentence-transformers/parallel-sentences-tatoeba
- sentence-transformers/parallel-sentences-talks
- sentence-transformers/parallel-sentences-europarl
- sentence-transformers/parallel-sentences-global-voices
- sentence-transformers/parallel-sentences-muse
- sentence-transformers/parallel-sentences-wikimatrix
- sentence-transformers/parallel-sentences-opensubtitles
- sentence-transformers/stackexchange-duplicates
- sentence-transformers/quora-duplicates
- sentence-transformers/wikianswers-duplicates
- sentence-transformers/all-nli
- sentence-transformers/simple-wiki
- sentence-transformers/altlex
- sentence-transformers/flickr30k-captions
- sentence-transformers/coco-captions
- sentence-transformers/nli-for-simcse
- jinaai/negation-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
co2_eq_emissions:
  emissions: 196.7083299812303
  energy_consumed: 0.5060646201491896
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 3.163
  hardware_used: 1 x NVIDIA GeForce RTX 3090
---

# Static Embeddings with BERT Multilingual uncased tokenizer finetuned on various datasets

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [wikititles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles), [tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba), [talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [europarl](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl), [global_voices](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices), [muse](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse), [wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix), [opensubtitles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles), [stackexchange](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates), [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates), [wikianswers_duplicates](https://huggingface.co/datasets/sentence-transformers/wikianswers-duplicates), [all_nli](https://huggingface.co/datasets/sentence-transformers/all-nli), [simple_wiki](https://huggingface.co/datasets/sentence-transformers/simple-wiki), [altlex](https://huggingface.co/datasets/sentence-transformers/altlex), [flickr30k_captions](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions), [coco_captions](https://huggingface.co/datasets/sentence-transformers/coco-captions), [nli_for_simcse](https://huggingface.co/datasets/sentence-transformers/nli-for-simcse) and [negation](https://huggingface.co/datasets/jinaai/negation-dataset) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, paraphrase mining, text classification, clustering, and more.

Read our [Static Embeddings blogpost](https://huggingface.co/blog/static-embeddings) to learn more about this model and how it was trained.

* **0 Active Parameters:** This model does not use any active parameters, instead consisting exclusively of averaging pre-computed token embeddings.
* **100x to 400x faster:** On CPU, this model is 100x to 400x faster than common options like [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). On GPU, it's 10x to 25x faster.
* **Matryoshka:** This model was trained with a [Matryoshka loss](https://huggingface.co/blog/matryoshka), allowing you to truncate the embeddings for faster retrieval at minimal performance costs.
* **Evaluations:** See [Evaluations](#evaluation) for details on performance on NanoBEIR, embedding speed, and Matryoshka dimensionality truncation.
* **Training Script:** See [train.py](train.py) for the training script used to train this model from scratch.

See [`static-retrieval-mrl-en-v1`](https://huggingface.co/sentence-transformers/static-retrieval-mrl-en-v1) for an English static embedding model that has been finetuned specifically for retrieval tasks.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [wikititles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles)
    - [tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba)
    - [talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
    - [europarl](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl)
    - [global_voices](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices)
    - [muse](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse)
    - [wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix)
    - [opensubtitles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles)
    - [stackexchange](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates)
    - [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
    - [wikianswers_duplicates](https://huggingface.co/datasets/sentence-transformers/wikianswers-duplicates)
    - [all_nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
    - [simple_wiki](https://huggingface.co/datasets/sentence-transformers/simple-wiki)
    - [altlex](https://huggingface.co/datasets/sentence-transformers/altlex)
    - [flickr30k_captions](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions)
    - [coco_captions](https://huggingface.co/datasets/sentence-transformers/coco-captions)
    - [nli_for_simcse](https://huggingface.co/datasets/sentence-transformers/nli-for-simcse)
    - [negation](https://huggingface.co/datasets/jinaai/negation-dataset)
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh, hr
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): StaticEmbedding(
    (embedding): EmbeddingBag(105879, 1024, mode='mean')
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/static-similarity-mrl-multilingual-v1")
# Run inference
sentences = [
    'It is known for its dry red chili powder .',
    'It is popular for dry red chili powder .',
    'These monsters will move in large groups .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

This model was trained with Matryoshka loss, allowing this model to be used with lower dimensionalities with minimal performance loss.
Notably, a lower dimensionality allows for much faster downstream tasks, such as clustering or classification. You can specify a lower dimensionality with the `truncate_dim` argument when initializing the Sentence Transformer model:

```python
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("tomaarsen/static-similarity-mrl-multilingual-v1", truncate_dim=256)
embeddings = model.encode([
    "I used to hate him.",
    "Раньше я ненавидел его."
])
print(embeddings.shape)
# => (2, 256)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

We've evaluated the model on 5 languages which have a lot of benchmarks across various tasks on [MTEB](https://huggingface.co/spaces/mteb/leaderboard).

We want to reiterate that this model is not intended for retrieval use cases. Instead, we evaluate on Semantic Textual Similarity (STS), Classification, and Pair Classification. We compare against the excellent and small [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) model.

![](img/similarity_mteb_eval.png)

Across all measured languages, [static-similarity-mrl-multilingual-v1](https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1) reaches an average **92.3%** for STS, **95.52%** for Pair Classification, and **86.52%** for Classification relative to [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small).

![](img/similarity_speed.png)

To make up for this performance reduction, [static-similarity-mrl-multilingual-v1](https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1) is approximately ~125x faster on CPU and ~10x faster on GPU devices than [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). Due to the super-linear nature of attention models, versus the linear nature of static embedding models, the speedup will only grow larger as the number of tokens to encode increases.

#### Matryoshka Evaluation

Lastly, we experimented with the impacts on English STS on MTEB performance when we did Matryoshka-style dimensionality reduction by truncating the output embeddings to a lower dimensionality. 

![English STS MTEB performance vs Matryoshka dimensionality reduction](img/similarity_matryoshka.png)

As you can see, you can easily reduce the dimensionality by 2x or 4x with minor (0.15% or 0.56%) performance hits. If the speed of your downstream task or your storage costs are a bottleneck, this should allow you to alleviate some of those concerns.

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

<details><summary>wikititles</summary>

* Dataset: [wikititles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles) at [d92a4d2](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles/tree/d92a4d28a082c3c93563feb92a77de6074bdeb52)
* Size: 14,700,458 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                       | non_english                                                                                    |
  |:--------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                        | string                                                                                         |
  | details | <ul><li>min: 4 characters</li><li>mean: 18.33 characters</li><li>max: 84 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 17.19 characters</li><li>max: 109 characters</li></ul> |
* Samples:
  | english                 | non_english                |
  |:------------------------|:---------------------------|
  | <code>Le Vintrou</code> | <code>Ле-Вентру</code>     |
  | <code>Greening</code>   | <code>Begrünung</code>     |
  | <code>Warrap</code>     | <code>واراب (توضيح)</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>tatoeba</summary>

* Dataset: [tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba) at [cec1343](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba/tree/cec1343ab5a7a8befe99af4a2d0ca847b6c84743)
* Size: 4,138,956 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                        | non_english                                                                                    |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 5 characters</li><li>mean: 31.59 characters</li><li>max: 196 characters</li></ul> | <ul><li>min: 6 characters</li><li>mean: 30.95 characters</li><li>max: 161 characters</li></ul> |
* Samples:
  | english                                                | non_english                          |
  |:-------------------------------------------------------|:-------------------------------------|
  | <code>I used to hate him.</code>                       | <code>Раньше я ненавидел его.</code> |
  | <code>It is nothing less than an insult to her.</code> | <code>それはまさに彼女に対する侮辱だ。</code>        |
  | <code>I've apologized, so lay off, OK?</code>          | <code>謝ったんだから、さっきのはチャラにしてよ。</code>   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>talks</summary>

* Dataset: [talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
* Size: 9,750,031 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                        | non_english                                                                                    |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 5 characters</li><li>mean: 94.41 characters</li><li>max: 493 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 82.49 characters</li><li>max: 452 characters</li></ul> |
* Samples:
  | english                                                                                               | non_english                                                    |
  |:------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | <code>(Laughter) EC: But beatbox started here in New York.</code>                                     | <code>(Skratt) EC: Fast beatbox började här i New York.</code> |
  | <code>I did not have enough money to buy food, and so to forget my hunger, I started singing."</code> | <code>食べ物を買うお金もなかった だから 空腹を忘れるために 歌を歌い始めたの」</code>             |
  | <code>That is another 25 million barrels a day.</code>                                                | <code>那时还要增加两千五百万桶的原油。</code>                                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>europarl</summary>

* Dataset: [europarl](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl) at [11007ec](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl/tree/11007ecf9c790178a49a4cbd5cfea451a170f2dc)
* Size: 4,990,000 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                         | non_english                                                                                     |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 0 characters</li><li>mean: 147.77 characters</li><li>max: 668 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 153.13 characters</li><li>max: 971 characters</li></ul> |
* Samples:
  | english                                                                                                                                                                                                                                                                                                                                           | non_english                                                                                                                                                                                                                                                                                                                                              |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>(SK) I would like to stress three key points in relation to this issue.</code>                                                                                                                                                                                                                                                              | <code>(SK) Chtěla bych zdůraznit tři klíčové body, které jsou s tímto tématem spojeny.</code>                                                                                                                                                                                                                                                            |
  | <code>Women have a higher recorded rate of unemployment, especially long term unemployment.</code>                                                                                                                                                                                                                                                | <code>Blandt kvinder registreres større arbejdsløshed, især blandt langtidsarbejdsløse.</code>                                                                                                                                                                                                                                                           |
  | <code>You will recall that we have occasionally had disagreements over how to interpret Rule 166 of our Rules of Procedure and that certain Members thought that the Presidency was not applying it properly, since it was not giving the floor for points of order that did not refer to the issue that was being debated at that moment.</code> | <code>De husker nok, at vi til tider har været uenige om fortolkningen af artikel 166 i vores forretningsorden, og at nogle af medlemmerne mente, at formanden ikke anvendte den korrekt, eftersom han ikke gav ordet til indlæg til forretningsordenen, når det ikke drejede sig om det spørgsmål, der blev drøftet på det pågældende tidspunkt.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>global_voices</summary>

* Dataset: [global_voices](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices) at [4cc20ad](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices/tree/4cc20add371f246bb1559b543f8b0dea178a1803)
* Size: 1,099,099 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                         | non_english                                                                                     |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 5 characters</li><li>mean: 115.13 characters</li><li>max: 740 characters</li></ul> | <ul><li>min: 3 characters</li><li>mean: 119.89 characters</li><li>max: 801 characters</li></ul> |
* Samples:
  | english                                                                                   | non_english                                                                                                 |
  |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|
  | <code>Generation 9/11: Cristina Balli (USA) from British Council USA on Vimeo.</code>     | <code>Генерација 9/11: Кристина Бали (САД) од Британскиот совет САД на Вимео.</code>                        |
  | <code>Jamaica: Mapping the state of emergency · Global Voices</code>                      | <code>Jamaica: Mapeando el estado de emergencia</code>                                                      |
  | <code>It takes more than courage or bravery to do such a... http://fb.me/12T47y0Ml</code> | <code>Θέλει κάτι παραπάνω από κουράγιο ή ανδρεία για να κάνεις κάτι τέτοιο... http://fb.me/12T47y0Ml</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>muse</summary>

* Dataset: [muse](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse) at [238c077](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse/tree/238c077ac66070748aaf2ab1e45185b0145b7291)
* Size: 1,368,274 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                      | non_english                                                                                  |
  |:--------|:---------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
  | type    | string                                                                                       | string                                                                                       |
  | details | <ul><li>min: 3 characters</li><li>mean: 7.38 characters</li><li>max: 16 characters</li></ul> | <ul><li>min: 1 characters</li><li>mean: 7.33 characters</li><li>max: 18 characters</li></ul> |
* Samples:
  | english              | non_english         |
  |:---------------------|:--------------------|
  | <code>metro</code>   | <code>metrou</code> |
  | <code>suggest</code> | <code>제안</code>     |
  | <code>nnw</code>     | <code>nno</code>    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>wikimatrix</summary>

* Dataset: [wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix) at [74a4cb1](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix/tree/74a4cb15422cdd0c3aacc93593b6cb96a9b9b3a9)
* Size: 9,688,498 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                          | non_english                                                                                      |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           |
  | details | <ul><li>min: 16 characters</li><li>mean: 124.31 characters</li><li>max: 418 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 129.99 characters</li><li>max: 485 characters</li></ul> |
* Samples:
  | english                                                                                                                                    | non_english                                                                                                                           |
  |:-------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
  | <code>3) A set of wikis to support collaboration activities and disseminate information about good practices.</code>                       | <code>3) Un conjunt de wikis per donar suport a les activitats de col·laboració i difusió d'informació sobre bones pràctiques.</code> |
  | <code>Daily cruiseferry services operate to Copenhagen and Frederikshavn in Denmark, and to Kiel in Germany.</code>                        | <code>Dịch vụ phà du lịch hàng ngày vận hành tới Copenhagen và Frederikshavn tại Đan Mạch, và tới Kiel tại Đức.</code>                |
  | <code>In late April 1943, Philipp was ordered to report to Hitler's headquarters, where he stayed for most of the next four months.</code> | <code>Sent i april 1943 fick Philipp ordern att rapportera till Hitlers högkvarter, där han stannade i fyra månader.</code>           |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>opensubtitles</summary>

* Dataset: [opensubtitles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles) at [d86a387](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles/tree/d86a387587ab6f2fd9ec7453b2765cec68111c87)
* Size: 4,990,000 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                        | non_english                                                                                    |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 0 characters</li><li>mean: 34.43 characters</li><li>max: 220 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 26.99 characters</li><li>max: 118 characters</li></ul> |
* Samples:
  | english                                                                 | non_english                                                    |
  |:------------------------------------------------------------------------|:---------------------------------------------------------------|
  | <code>Would you send a tomato juice, black coffee and a masseur?</code> | <code>هل لك أن ترسل لي عصير طماطم قهوة سوداء.. والمدلك!</code> |
  | <code>To hear the angels sing</code>                                    | <code>لكى تسمع غناء الملائكه</code>                            |
  | <code>Brace yourself.</code>                                            | <code>" تمالك نفسك " بريكر</code>                              |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>stackexchange</summary>

* Dataset: [stackexchange](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates) at [1c9657a](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates/tree/1c9657aec12d9e101667bb9593efcc623c4a68ff)
* Size: 250,519 training samples
* Columns: <code>post1</code> and <code>post2</code>
* Approximate statistics based on the first 1000 samples:
  |         | post1                                                                                             | post2                                                                                             |
  |:--------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                            | string                                                                                            |
  | details | <ul><li>min: 77 characters</li><li>mean: 669.56 characters</li><li>max: 3982 characters</li></ul> | <ul><li>min: 81 characters</li><li>mean: 641.44 characters</li><li>max: 4053 characters</li></ul> |
* Samples:
  | post1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | post2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>New user question about passwords Just got a refurbished computer with Ubuntu as the OS.  Have never even heard of the OS and now I'm trying to learn.  When I boot the system, it starts up great.  But, if I try to navigate around, it requires a password.  Is there a trick to finding the initial password?  Please advise.</code>                                                                                                                                              | <code>How do I reset a lost administrative password? I'm working on a Ubuntu system, and my client has completely forgotten his administrative password. He doesn't even remember entering one; however it is there.  I've tried the suggestions on the website, and I have been unsuccessful in deleting the password so that I can download applets required for running some files. Is there a solution?</code>                                                                                                    |
  | <code>Reorder a list of string randomly but constant in a period of time I need to reorder a list in a random way but I want to have the same result on a short period of time ... So I have:  var list = new String[] { "Angie", "David", "Emily", "James" }    var shuffled = list.OrderBy(v =&gt; "4a78926c")).ToList();   But I always get the same order ... I could use Guid.NewGuid() but then I would have a different result in a short period of time.  How can I do this?</code> | <code>Randomize a List What is the best way to randomize the order of a generic list in C#? I've got a finite set of 75 numbers in a list I would like to assign a random order to, in order to draw them for a lottery type application.</code>                                                                                                                                                                                                                                                                      |
  | <code>Made a mistake on check need help to fix I wrote a check and put the amount in the pay to order spot. Can I just mark it out, put the name in the spot and finish writing the check?</code>                                                                                                                                                                                                                                                                                           | <code>How to correct a mistake made when writing a check? I think I know the answer to this, but I'm not sure, and it's a good question, so I'll ask:  What is the accepted/proper way to correct a mistake made on a check?  For instance, I imagine that in any given January, some people accidentally date a check in the previous year.  Is there a way to correct such a mistake, or must a check be voided (and wasted)?  Pointers to definitive information (U.S., Canada, and elsewhere) are helpful.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>quora</summary>

* Dataset: [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 101,762 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        | negative                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 16 characters</li><li>mean: 53.47 characters</li><li>max: 249 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 52.63 characters</li><li>max: 237 characters</li></ul> | <ul><li>min: 14 characters</li><li>mean: 54.67 characters</li><li>max: 292 characters</li></ul> |
* Samples:
  | anchor                                                | positive                                         | negative                                            |
  |:------------------------------------------------------|:-------------------------------------------------|:----------------------------------------------------|
  | <code>What food should I try in Brazil?</code>        | <code>Which foods should I try in Brazil?</code> | <code>What meat should one eat in Argentina?</code> |
  | <code>What is the best way to get a threesome?</code> | <code>How does one find a threesome?</code>      | <code>How is the experience of a threesome?</code>  |
  | <code>Whether I do CA or MBA? Which is better?</code> | <code>Which is better CA or MBA?</code>          | <code>Which is better CA or IT?</code>              |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>wikianswers_duplicates</summary>

* Dataset: [wikianswers_duplicates](https://huggingface.co/datasets/sentence-transformers/wikianswers-duplicates) at [9af6367](https://huggingface.co/datasets/sentence-transformers/wikianswers-duplicates/tree/9af6367d1ad084daf8a9de9c21bc33fcdc7770d0)
* Size: 9,990,000 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 14 characters</li><li>mean: 47.39 characters</li><li>max: 151 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 47.58 characters</li><li>max: 154 characters</li></ul> |
* Samples:
  | anchor                                                                | positive                                                                 |
  |:----------------------------------------------------------------------|:-------------------------------------------------------------------------|
  | <code>Did Democritus belive matter was continess?</code>              | <code>Why did democritus call the smallest pice of matter atomos?</code> |
  | <code>Tell you about the most ever done to satisfy a customer?</code> | <code>How do you satisfy your client or customer?</code>                 |
  | <code>How is a chemical element different from a compound?</code>     | <code>How is a chemical element different to a compound?</code>          |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>all_nli</summary>

* Dataset: [all_nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        | negative                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 18 characters</li><li>mean: 34.88 characters</li><li>max: 193 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 46.49 characters</li><li>max: 181 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 50.47 characters</li><li>max: 204 characters</li></ul> |
* Samples:
  | anchor                                                                     | positive                                         | negative                                                   |
  |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
  | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>simple_wiki</summary>

* Dataset: [simple_wiki](https://huggingface.co/datasets/sentence-transformers/simple-wiki) at [60fd9b4](https://huggingface.co/datasets/sentence-transformers/simple-wiki/tree/60fd9b4680642ace0e2604cc2de44d376df419a7)
* Size: 102,225 training samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                                            | simplified                                                                                       |
  |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                           |
  | details | <ul><li>min: 18 characters</li><li>mean: 149.3 characters</li><li>max: 573 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 123.58 characters</li><li>max: 576 characters</li></ul> |
* Samples:
  | text                                                                                                                                                                                                                              | simplified                                                                                                                                                                                                              |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The next morning , it had a small CDO and well-defined bands , and the system , either a weak tropical storm or a strong tropical depression , likely reached its peak .</code>                                             | <code>The next morning , it had a small amounts of convection near the center and well-defined bands , and the system , either a weak tropical storm or a strong tropical depression , likely reached its peak .</code> |
  | <code>The region of measurable parameter space that corresponds to a regime is very often loosely defined . Examples include `` the superfluid regime '' , `` the steady state regime '' or `` the femtosecond regime '' .</code> | <code>This is common if a regime is threatened by another regime .</code>                                                                                                                                               |
  | <code>The Lamborghini Diablo is a high-performance mid-engined sports car that was built by Italian automaker Lamborghini between 1990 and 2001 .</code>                                                                          | <code>The Lamborghini Diablo is a sport car that was built by Lamborghini from 1990 to 2001 .</code>                                                                                                                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>altlex</summary>

* Dataset: [altlex](https://huggingface.co/datasets/sentence-transformers/altlex) at [97eb209](https://huggingface.co/datasets/sentence-transformers/altlex/tree/97eb20963455c361d5a81c107c3596cff9e0cd82)
* Size: 112,696 training samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                                             | simplified                                                                                       |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           |
  | details | <ul><li>min: 13 characters</li><li>mean: 131.03 characters</li><li>max: 492 characters</li></ul> | <ul><li>min: 13 characters</li><li>mean: 112.41 characters</li><li>max: 492 characters</li></ul> |
* Samples:
  | text                                                                                                                                                                                                                                 | simplified                                                                                                                                           |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Reinforcement and punishment are the core tools of operant conditioning .</code>                                                                                                                                               | <code>Principles of operant conditioning :</code>                                                                                                    |
  | <code>The Japanese Ministry of Health , Labour and Welfare defines `` hikikomori '' as people who refuse to leave their house and , thus , isolate themselves from society in their homes for a period exceeding six months .</code> | <code>The Japanese Ministry of Health , Labour and Welfare defines hikikomori as people who refuse to leave their house for over six months .</code> |
  | <code>It has six rows of black spines and has a pair of long , clubbed spines on the head .</code>                                                                                                                                   | <code>It has a pair of long , clubbed spines on the head .</code>                                                                                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### flickr30k_captions

* Dataset: [flickr30k_captions](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions) at [0ef0ce3](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions/tree/0ef0ce31492fd8dc161ed483a40d3c4894f9a8c1)
* Size: 158,881 training samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
  |         | caption1                                                                                        | caption2                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 20 characters</li><li>mean: 63.19 characters</li><li>max: 318 characters</li></ul> | <ul><li>min: 13 characters</li><li>mean: 63.65 characters</li><li>max: 205 characters</li></ul> |
* Samples:
  | caption1                                                                                          | caption2                                                                          |
  |:--------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | <code>Four women pose for a photograph with a man in a bright yellow suit.</code>                 | <code>A group of friends get their photo taken with a man in a green suit.</code> |
  | <code>A many dressed in army gear walks on the crash walking a brown dog.</code>                  | <code>A man with army fatigues is walking his dog.</code>                         |
  | <code>Four people are sitting around a kitchen counter while one is drinking from a glass.</code> | <code>A group of people sit around a breakfast bar.</code>                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>coco_captions</summary>

* Dataset: [coco_captions](https://huggingface.co/datasets/sentence-transformers/coco-captions) at [bd26018](https://huggingface.co/datasets/sentence-transformers/coco-captions/tree/bd2601822b9af9a41656d678ffbd5c80d81e276a)
* Size: 414,010 training samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
  |         | caption1                                                                                        | caption2                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 30 characters</li><li>mean: 52.57 characters</li><li>max: 151 characters</li></ul> | <ul><li>min: 29 characters</li><li>mean: 52.71 characters</li><li>max: 186 characters</li></ul> |
* Samples:
  | caption1                                                                                                     | caption2                                                                             |
  |:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | <code>THERE ARE FRIENDS ON THE BEACH POSING </code>                                                          | <code>A group of people standing together on the beach while holding a woman.</code> |
  | <code>a lovely white bathroom with white shower curtain.</code>                                              | <code>A white toilet sitting in a bathroom next to a sink.</code>                    |
  | <code>Two drinking glass on a counter and a man holding a knife looking at something in front of him.</code> | <code>A restaurant employee standing behind two cups on a counter.</code>            |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>nli_for_simcse</summary>

* Dataset: [nli_for_simcse](https://huggingface.co/datasets/sentence-transformers/nli-for-simcse) at [926cae4](https://huggingface.co/datasets/sentence-transformers/nli-for-simcse/tree/926cae4af15a99b5cc2b053212bb52a4b377c418)
* Size: 274,951 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                       | negative                                                                                       |
  |:--------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 11 characters</li><li>mean: 87.69 characters</li><li>max: 483 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 43.85 characters</li><li>max: 244 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 43.87 characters</li><li>max: 172 characters</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                       | positive                                                              | negative                                                   |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------|:-----------------------------------------------------------|
  | <code>A white horse and a rider wearing a ale blue shirt, white pants, and a black helmet are jumping a hurdle.</code>                                                                                                       | <code>An equestrian is having a horse jump a hurdle.</code>           | <code>A competition is taking place in a kitchen.</code>   |
  | <code>A group of people in a dome like building.</code>                                                                                                                                                                      | <code>A gathering inside a building.</code>                           | <code>Cats are having a party.</code>                      |
  | <code>Home to thousands of sheep and a few scattered farming families, the area is characterized by the stark beauty of bare peaks, rugged fells, and the most remote lakes, combined with challenging, narrow roads.</code> | <code>There are no wide and easy roads going through the area.</code> | <code>There are more humans than sheep in the area.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>negation</summary>

* Dataset: [negation](https://huggingface.co/datasets/jinaai/negation-dataset) at [cd02256](https://huggingface.co/datasets/jinaai/negation-dataset/tree/cd02256426cc566d176285a987e5436f1cd01382)
* Size: 10,000 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                         | entailment                                                                                     | negative                                                                                       |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 9 characters</li><li>mean: 65.84 characters</li><li>max: 275 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 34.06 characters</li><li>max: 167 characters</li></ul> | <ul><li>min: 9 characters</li><li>mean: 37.26 characters</li><li>max: 166 characters</li></ul> |
* Samples:
  | anchor                                                                                             | entailment                                                        | negative                                                              |
  |:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:----------------------------------------------------------------------|
  | <code>A boy with his hands above his head stands on a cement pillar above the cobblestones.</code> | <code>A boy is standing on a pillar over the cobblestones.</code> | <code>A boy is not standing on a pillar over the cobblestones.</code> |
  | <code>The man works hard in his home office.</code>                                                | <code>home based worker works harder</code>                       | <code>home based worker does not work harder</code>                   |
  | <code>Man in black shirt plays silver electric guitar.</code>                                      | <code>A man plays a silver electric guitar.</code>                | <code>A man does not play a silver electric guitar.</code>            |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

### Evaluation Datasets

<details><summary>wikititles</summary>

* Dataset: [wikititles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles) at [d92a4d2](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles/tree/d92a4d28a082c3c93563feb92a77de6074bdeb52)
* Size: 14,700,458 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                       | non_english                                                                                  |
  |:--------|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
  | type    | string                                                                                        | string                                                                                       |
  | details | <ul><li>min: 4 characters</li><li>mean: 18.33 characters</li><li>max: 77 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 17.3 characters</li><li>max: 83 characters</li></ul> |
* Samples:
  | english                                                          | non_english                          |
  |:-----------------------------------------------------------------|:-------------------------------------|
  | <code>Bjørvika</code>                                            | <code>比約維卡</code>                    |
  | <code>Old Mystic, Connecticut</code>                             | <code>Олд Мистик (Конектикат)</code> |
  | <code>Cystic fibrosis transmembrane conductance regulator</code> | <code>CFTR</code>                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>tatoeba</summary>

* Dataset: [tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba) at [cec1343](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba/tree/cec1343ab5a7a8befe99af4a2d0ca847b6c84743)
* Size: 4,138,956 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                        | non_english                                                                                   |
  |:--------|:-----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                        |
  | details | <ul><li>min: 5 characters</li><li>mean: 31.83 characters</li><li>max: 235 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 31.7 characters</li><li>max: 189 characters</li></ul> |
* Samples:
  | english                                              | non_english                                          |
  |:-----------------------------------------------------|:-----------------------------------------------------|
  | <code>You are not consistent in your actions.</code> | <code>Je bent niet consequent in je handelen.</code> |
  | <code>Neither of them seemed old.</code>             | <code>Ninguno de ellos lucía viejo.</code>           |
  | <code>Stand up, please.</code>                       | <code>Устаните, молим Вас.</code>                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>talks</summary>

* Dataset: [talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
* Size: 9,750,031 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                        | non_english                                                                                    |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 9 characters</li><li>mean: 94.78 characters</li><li>max: 634 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 84.61 characters</li><li>max: 596 characters</li></ul> |
* Samples:
  | english                                                           | non_english                                                            |
  |:------------------------------------------------------------------|:-----------------------------------------------------------------------|
  | <code>I'm earthed in my essence, and my self is suspended.</code> | <code>Je suis ancrée, et mon moi est temporairement inexistant.</code> |
  | <code>It's not back on your shoulder.</code>                      | <code>Dar nu e înapoi pe umăr.</code>                                  |
  | <code>They're usually students who've never seen a desert.</code> | <code>たいていの学生は砂漠を見たこともありません</code>                                     |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>europarl</summary>

* Dataset: [europarl](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl) at [11007ec](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl/tree/11007ecf9c790178a49a4cbd5cfea451a170f2dc)
* Size: 10,000 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                          | non_english                                                                                      |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           |
  | details | <ul><li>min: 0 characters</li><li>mean: 148.52 characters</li><li>max: 1215 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 154.44 characters</li><li>max: 1316 characters</li></ul> |
* Samples:
  | english                                                                                                                                                                                                                                                   | non_english                                                                                                                                                                                                                                                                                                                |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Mr Schmidt, Mr Trichet, I absolutely cannot go along with these proposals.</code>                                                                                                                                                                   | <code>Pane Schmidte, pane Trichete, s těmito návrhy nemohu vůbec souhlasit.</code>                                                                                                                                                                                                                                         |
  | <code>The Council and Parliament recently adopted the regulation on the Single European Sky, one of the provisions of which was Community membership of Eurocontrol, so that Parliament has already indirectly expressed its views on this matter.</code> | <code>Der Rat und das Parlament haben kürzlich die Verordnung über die Schaffung eines einheitlichen europäischen Luftraums verabschiedet, in der unter anderem die Mitgliedschaft der Gemeinschaft bei Eurocontrol festgelegt ist, so dass das Parlament seine Auffassungen hierzu indirekt bereits dargelegt hat.</code> |
  | <code>It was held over from the January part-session until this part-session.</code>                                                                                                                                                                      | <code>Ihre Behandlung wurde von der Januar-Sitzung auf die jetzige vertagt.</code>                                                                                                                                                                                                                                         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>global_voices</summary>

* Dataset: [global_voices](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices) at [4cc20ad](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices/tree/4cc20add371f246bb1559b543f8b0dea178a1803)
* Size: 1,099,099 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                         | non_english                                                                                     |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 3 characters</li><li>mean: 115.61 characters</li><li>max: 629 characters</li></ul> | <ul><li>min: 3 characters</li><li>mean: 121.61 characters</li><li>max: 664 characters</li></ul> |
* Samples:
  | english                                                                                                                                                  | non_english                                                                                                                                                           |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Haiti: Security vs. Relief? · Global Voices</code>                                                                                                 | <code>Haïti : Zones rouges, zones vertes - sécurité contre aide humanitaire ?</code>                                                                                  |
  | <code>In order to prevent weapon smuggling through tunnels, his forces would have fought and killed Palestinians over a sustained period of time.</code> | <code>Con el fin de impedir el contrabando de armas a través de túneles, sus fuerzas habrían combatido y muerto palestinos durante un largo período de tiempo.</code> |
  | <code>Tombstone of Vitalis, an ancient Roman cavalry officer, displayed in front of the Skopje City Museum.</code>                                       | <code>Lápida de Vitalis, un antiguo oficial romano de caballería, exhibida frente al Museo de la Ciudad de Skopje.</code>                                             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>muse</summary>

* Dataset: [muse](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse) at [238c077](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse/tree/238c077ac66070748aaf2ab1e45185b0145b7291)
* Size: 1,368,274 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                     | non_english                                                                                  |
  |:--------|:--------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
  | type    | string                                                                                      | string                                                                                       |
  | details | <ul><li>min: 3 characters</li><li>mean: 7.5 characters</li><li>max: 17 characters</li></ul> | <ul><li>min: 1 characters</li><li>mean: 7.39 characters</li><li>max: 16 characters</li></ul> |
* Samples:
  | english                  | non_english              |
  |:-------------------------|:-------------------------|
  | <code>generalised</code> | <code>γενικευμένη</code> |
  | <code>language</code>    | <code>jazyku</code>      |
  | <code>finalised</code>   | <code>финализиран</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>wikimatrix</summary>

* Dataset: [wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix) at [74a4cb1](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix/tree/74a4cb15422cdd0c3aacc93593b6cb96a9b9b3a9)
* Size: 9,688,498 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                         | non_english                                                                                      |
  |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                           |
  | details | <ul><li>min: 11 characters</li><li>mean: 122.6 characters</li><li>max: 424 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 128.09 characters</li><li>max: 579 characters</li></ul> |
* Samples:
  | english                                                                                                            | non_english                                                                                                                      |
  |:-------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
  | <code>Along with the adjacent waters, it was declared a nature reserve in 2002.</code>                             | <code>Juntament amb les aigües adjacents, va ser declarada reserva natural el 2002.</code>                                       |
  | <code>Like her husband, Charlotte was a patron of astronomy.</code>                                                | <code>Stejně jako manžel byla Šarlota patronkou astronomie.</code>                                                               |
  | <code>Some of the music consists of simple sounds, such as a wind effect heard over the poem "Soon Alaska".</code> | <code>Sommige muziekstukken bevatten eenvoudige geluiden, zoals het geluid van de wind tijdens het gedicht "Soon Alaska".</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>opensubtitles</summary>

* Dataset: [opensubtitles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles) at [d86a387](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles/tree/d86a387587ab6f2fd9ec7453b2765cec68111c87)
* Size: 10,000 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                                        | non_english                                                                                    |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 0 characters</li><li>mean: 35.01 characters</li><li>max: 200 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 27.79 characters</li><li>max: 143 characters</li></ul> |
* Samples:
  | english                                    | non_english                            |
  |:-------------------------------------------|:---------------------------------------|
  | <code>- I don't need my medicine.</code>   | <code>-لا أحتاج لدوائي</code>          |
  | <code>The Sovereign... Ah.</code>          | <code>(الطاغية)!</code>                |
  | <code>The other two from your ship.</code> | <code>الإثنان الأخران من سفينتك</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>stackexchange</summary>

* Dataset: [stackexchange](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates) at [1c9657a](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates/tree/1c9657aec12d9e101667bb9593efcc623c4a68ff)
* Size: 250,519 evaluation samples
* Columns: <code>post1</code> and <code>post2</code>
* Approximate statistics based on the first 1000 samples:
  |         | post1                                                                                             | post2                                                                                             |
  |:--------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                            | string                                                                                            |
  | details | <ul><li>min: 64 characters</li><li>mean: 669.92 characters</li><li>max: 4103 characters</li></ul> | <ul><li>min: 62 characters</li><li>mean: 644.68 characters</li><li>max: 4121 characters</li></ul> |
* Samples:
  | post1                                                                                                                                                                                                                                                                                                                                                                       | post2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Find the particular solution for this linear ODE $y' '-2y'+5y=e^x \cos2x$. Find the particular solution for this linear ODE :$y' '-2y'+5y=e^x \cos2x$.  How can I use Undetermined coefficients method ?</code>                                                                                                                                                       | <code>Particular solution of $y''-4y'+5y = 4e^{2x} (\sin x)$ How do I find the particular solution of this second order inhomogenous differential equation? (Using undetermined coefficients).  $y''-4y'+5y = 4e^{2x} (\sin x)$  I can find the generel homogenous solutions but I need help for the particular.</code>                                                                                                                                                                                                                                                       |
  | <code>Unbounded sequence has an divergent subsequence Show that if $(x_n)$ is unbounded, then there exists a subsequence $(x_{n_k})$ such that $\lim 1/(x_{n_k}) =0.$ I was thinking that $(x_n)$ is a subsequence of itself. WLOG, suppose $(x_n)$ does not have an upper bound. By Algebraic Limit Theorem, $\lim 1/(x_{n_k}) =0.$ Is there any flaws in my proof?</code> | <code>Given the sequence $(x_n)$ is unbounded, show that there exist a subsequence $(x_{n_k})$ such that $\lim(1/x_n)=0$. Given the sequence $(x_n)$ is unbounded, show that there exist a subsequence $(x_{n_k})$ such that $\lim(1/x_{n_k})=0$.   I guess I have to prove that $(x_{n_k})$ diverge, but I don't know how to carry on.  Thanks.</code>                                                                                                                                                                                                                       |
  | <code>"The problem is who can we get to replace her" vs. "The problem is who we can get to replace her" "The problem is who can we get to replace her" vs. "The problem is who we can get to replace her" Which one is correct and why?</code>                                                                                                                              | <code>Changing subject and verb positions in statements and questions We always change subject and verb positions in whenever we want to ask a question such as "What is your name?". But when it comes to statements like the following, which form is correct?        I don't understand what are you talking about.   I don't understand what you are talking about.      Another example        Do you know what time is it?   Do you know what time it is?      Another example        Do you care how do I feel about this?   Do you care how I feel about this?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>quora</summary>

* Dataset: [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 101,762 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        | negative                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 15 characters</li><li>mean: 52.48 characters</li><li>max: 164 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 52.86 characters</li><li>max: 162 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 56.18 characters</li><li>max: 298 characters</li></ul> |
* Samples:
  | anchor                                                | positive                                                   | negative                                                                                                                                                                                                          |
  |:------------------------------------------------------|:-----------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Is pornography an art?</code>                   | <code>Can pornography be art?</code>                       | <code>Does pornography involve the objectification of women?</code>                                                                                                                                               |
  | <code>How can I improve my speaking in public?</code> | <code>How can I improve my public speaking ability?</code> | <code>How do I improve my vocabulary and English speaking skills? I am a 22 year old software engineer and come from a Telugu medium background. I am able to write well, but my speaking skills are poor.</code> |
  | <code>How do I develop better people skills?</code>   | <code>How can I get better people skills?</code>           | <code>How do I get better at Minecraft?</code>                                                                                                                                                                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>wikianswers_duplicates</summary>

* Dataset: [wikianswers_duplicates](https://huggingface.co/datasets/sentence-transformers/wikianswers-duplicates) at [9af6367](https://huggingface.co/datasets/sentence-transformers/wikianswers-duplicates/tree/9af6367d1ad084daf8a9de9c21bc33fcdc7770d0)
* Size: 10,000 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 14 characters</li><li>mean: 47.88 characters</li><li>max: 145 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 47.76 characters</li><li>max: 201 characters</li></ul> |
* Samples:
  | anchor                                                                    | positive                                                     |
  |:--------------------------------------------------------------------------|:-------------------------------------------------------------|
  | <code>Can you get pregnant if tubes are clamped?</code>                   | <code>How long can your fallopian tubes stay clamped?</code> |
  | <code>Is there any object that are triangular prism?</code>               | <code>Is a trapezium the same as a triangular prism?</code>  |
  | <code>Where is the neutral switch located on a 2000 ford explorer?</code> | <code>Ford f150 1996 safety switch?</code>                   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>all_nli</summary>

* Dataset: [all_nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        | negative                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 15 characters</li><li>mean: 72.82 characters</li><li>max: 300 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 34.11 characters</li><li>max: 126 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 36.38 characters</li><li>max: 121 characters</li></ul> |
* Samples:
  | anchor                                                                                                                                                                         | positive                                                    | negative                                                |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                | <code>The men are fighting outside a deli.</code>       |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code>        |
  | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>A man selling donuts to a customer.</code>            | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>simple_wiki</summary>

* Dataset: [simple_wiki](https://huggingface.co/datasets/sentence-transformers/simple-wiki) at [60fd9b4](https://huggingface.co/datasets/sentence-transformers/simple-wiki/tree/60fd9b4680642ace0e2604cc2de44d376df419a7)
* Size: 102,225 evaluation samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                                             | simplified                                                                                       |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           |
  | details | <ul><li>min: 24 characters</li><li>mean: 147.36 characters</li><li>max: 599 characters</li></ul> | <ul><li>min: 19 characters</li><li>mean: 124.94 characters</li><li>max: 540 characters</li></ul> |
* Samples:
  | text                                                                                                                                                                                 | simplified                                                                                                              |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------|
  | <code>It marks the southernmost point of the Bahà a de Banderas , upon which the port and resort city of Puerto Vallarta stands .</code>                                             | <code>It is the most southern point of the Bahà a de Banderas .</code>                                                  |
  | <code>The interiors of the stations resemble that of the former western Soviet nations , with chandeliers hanging from the corridors .</code>                                        | <code>Its interior resembles that of western former Soviet nations with chandeliers hanging from the corridors .</code> |
  | <code>The Senegal national football team , nicknamed the Lions of Teranga , is the national team of Senegal and is controlled by the Fà dà ration Sà nà galaise de Football .</code> | <code>Senegal national football team is the national football team of Senegal .</code>                                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>altlex</summary>

* Dataset: [altlex](https://huggingface.co/datasets/sentence-transformers/altlex) at [97eb209](https://huggingface.co/datasets/sentence-transformers/altlex/tree/97eb20963455c361d5a81c107c3596cff9e0cd82)
* Size: 112,696 evaluation samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                                            | simplified                                                                                      |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 9 characters</li><li>mean: 138.99 characters</li><li>max: 592 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 119.43 characters</li><li>max: 517 characters</li></ul> |
* Samples:
  | text                                                                                                   | simplified                                                                      |
  |:-------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
  | <code>14,000 ) referred to as `` The bush '' within the media .</code>                                 | <code>14,000 ) called `` the bush '' in the media .</code>                      |
  | <code>The next day he told Elizabeth everything he knew regarding Catherine and her pregnancy .</code> | <code>The next day he told Elizabeth everything .</code>                        |
  | <code>Alice Ivers and Warren Tubbs had four sons and three daughters together .</code>                 | <code>Alice Ivers and Warren Tubbs had 4 sons and 3 daughters together .</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>flickr30k_captions</summary>

* Dataset: [flickr30k_captions](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions) at [0ef0ce3](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions/tree/0ef0ce31492fd8dc161ed483a40d3c4894f9a8c1)
* Size: 158,881 evaluation samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
  |         | caption1                                                                                        | caption2                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 12 characters</li><li>mean: 62.95 characters</li><li>max: 279 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 63.34 characters</li><li>max: 206 characters</li></ul> |
* Samples:
  | caption1                                                                                              | caption2                                                                                   |
  |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------|
  | <code>A person wearing sunglasses, a visor, and a British flag is carrying 6 Heineken bottles.</code> | <code>A woman wearing a blue visor is holding 5 bottles of Heineken beer.</code>           |
  | <code>Two older people hold hands while walking down a street alley with a group of people.</code>    | <code>A group of senior citizens walking down narrow pathway.</code>                       |
  | <code>View of bicyclists from behind during a race.</code>                                            | <code>A Peloton of bicyclists riding down a road of tightly packed together houses.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>coco_captions</summary>

* Dataset: [coco_captions](https://huggingface.co/datasets/sentence-transformers/coco-captions) at [bd26018](https://huggingface.co/datasets/sentence-transformers/coco-captions/tree/bd2601822b9af9a41656d678ffbd5c80d81e276a)
* Size: 414,010 evaluation samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
  |         | caption1                                                                                       | caption2                                                                                       |
  |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 26 characters</li><li>mean: 51.9 characters</li><li>max: 130 characters</li></ul> | <ul><li>min: 28 characters</li><li>mean: 52.7 characters</li><li>max: 135 characters</li></ul> |
* Samples:
  | caption1                                                          | caption2                                                              |
  |:------------------------------------------------------------------|:----------------------------------------------------------------------|
  | <code>A blurry photo of a man next to a refrigerator</code>       | <code>The man in black is moving towards a refrigerator.</code>       |
  | <code>A young child holding a remote control in it's hand.</code> | <code>A boy holds a remote control up to the camera.</code>           |
  | <code>a big airplane that is parked on some concrete</code>       | <code>A man standing next to a fighter jet under a cloudy sky.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>nli_for_simcse</summary>

* Dataset: [nli_for_simcse](https://huggingface.co/datasets/sentence-transformers/nli-for-simcse) at [926cae4](https://huggingface.co/datasets/sentence-transformers/nli-for-simcse/tree/926cae4af15a99b5cc2b053212bb52a4b377c418)
* Size: 274,951 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                         | positive                                                                                        | negative                                                                                       |
  |:--------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                          | string                                                                                         |
  | details | <ul><li>min: 9 characters</li><li>mean: 84.79 characters</li><li>max: 598 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 44.26 characters</li><li>max: 172 characters</li></ul> | <ul><li>min: 9 characters</li><li>mean: 44.11 characters</li><li>max: 134 characters</li></ul> |
* Samples:
  | anchor                                                                                                                                  | positive                                                                                           | negative                                                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | <code>a man waiting for train with a blue coat blue jeans while holing a rope.</code>                                                   | <code>A man is waiting for a train.</code>                                                         | <code>A man is sitting on a greyhound bus waiting to leave.</code> |
  | <code>Australia's floating dollar has apparently allowed the island continent to sail almost unscathed through the Asian crisis.</code> | <code>Australia has a floating dollar that has made them impervious to the problem in Asia.</code> | <code>Australia has a dollar that is heavily tied to Asia.</code>  |
  | <code>A city street in front of a business with a construction worker and road cones.</code>                                            | <code>There is a city street with construction worker and road cones.</code>                       | <code>There are no cones in front of the city street.</code>       |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

</details>

<details><summary>negation</summary>

* Dataset: [negation](https://huggingface.co/datasets/jinaai/negation-dataset) at [cd02256](https://huggingface.co/datasets/jinaai/negation-dataset/tree/cd02256426cc566d176285a987e5436f1cd01382)
* Size: 10,000 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | entailment                                                                                     | negative                                                                                       |
  |:--------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                         | string                                                                                         |
  | details | <ul><li>min: 26 characters</li><li>mean: 69.49 characters</li><li>max: 229 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 34.88 characters</li><li>max: 89 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 38.68 characters</li><li>max: 87 characters</li></ul> |
* Samples:
  | anchor                                                                                                                                       | entailment                                                                | negative                                                                          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | <code>Two men, one standing and one seated on the ground are attempting to wrangle a bull as dust from the action is being kicked up.</code> | <code>Two cowboys attempt to wrangle a bull.</code>                       | <code>Two cowboys do not attempt to wrangle a bull.</code>                        |
  | <code>A woman dressed in black is silhouetted against a cloud darkened sky.</code>                                                           | <code>A woman in black stands in front of a dark, cloudy backdrop.</code> | <code>A woman in black does not stand in front of a dark, cloudy backdrop.</code> |
  | <code>A kid in a blue shirt playing on a playground.</code>                                                                                  | <code>A kid playing on a playground wearing a blue shirt</code>           | <code>A kid not playing on a playground wearing a black shirt</code>              |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```
</details>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 0.2
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.2
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | wikititles loss | tatoeba loss | talks loss | europarl loss | global voices loss | muse loss | wikimatrix loss | opensubtitles loss | stackexchange loss | quora loss | wikianswers duplicates loss | all nli loss | simple wiki loss | altlex loss | flickr30k captions loss | coco captions loss | nli for simcse loss | negation loss |
|:------:|:-----:|:-------------:|:---------------:|:------------:|:----------:|:-------------:|:------------------:|:---------:|:---------------:|:------------------:|:------------------:|:----------:|:---------------------------:|:------------:|:----------------:|:-----------:|:-----------------------:|:------------------:|:-------------------:|:-------------:|
| 0.0000 | 1     | 38.504        | -               | -            | -          | -             | -                  | -         | -               | -                  | -                  | -          | -                           | -            | -                | -           | -                       | -                  | -                   | -             |
| 0.0327 | 1000  | 21.3661       | 15.2607         | 9.1892       | 11.6736    | 1.6431        | 6.6894             | 31.9579   | 3.0122          | 0.3541             | 5.1814             | 2.3756     | 4.9474                      | 12.7699      | 0.5687           | 0.8911      | 21.0068                 | 17.1302            | 10.8964             | 6.7603        |
| 0.0654 | 2000  | 9.8377        | 11.7637         | 7.1680       | 8.7697     | 1.6077        | 5.2310             | 27.4887   | 1.8375          | 0.3379             | 5.1107             | 2.2083     | 4.1690                      | 12.0384      | 0.4837           | 0.7131      | 20.5401                 | 17.8388            | 10.6706             | 7.0488        |
| 0.0982 | 3000  | 8.5279        | 10.8719         | 6.6160       | 8.3116     | 1.5638        | 4.7298             | 25.8572   | 1.6738          | 0.3152             | 5.1009             | 2.0893     | 3.7332                      | 12.0452      | 0.4285           | 0.6519      | 20.2154                 | 16.2715            | 10.7693             | 7.3144        |
| 0.1309 | 4000  | 7.8208        | 10.4614         | 5.4918       | 7.4421     | 1.4420        | 4.0505             | 24.9000   | 1.3462          | 0.2925             | 4.7643             | 2.1143     | 3.7457                      | 11.6570      | 0.4390           | 0.6536      | 19.4405                 | 16.0912            | 10.7537             | 7.2120        |
| 0.1636 | 5000  | 7.5347        | 9.5381          | 5.9489       | 7.4027     | 1.4858        | 4.0272             | 23.8335   | 1.2453          | 0.3027             | 3.1262             | 1.9170     | 3.7535                      | 11.6186      | 0.4090           | 0.6131      | 18.9329                 | 16.1769            | 10.1123             | 7.0750        |
| 0.1963 | 6000  | 7.1819        | 9.2175          | 5.3231       | 7.0836     | 1.4795        | 3.8328             | 23.1620   | 1.1609          | 0.2964             | 2.7653             | 1.9440     | 3.6610                      | 11.2147      | 0.3714           | 0.5853      | 19.0478                 | 16.4413            | 9.5790              | 6.8695        |
| 0.2291 | 7000  | 6.9852        | 9.0344          | 5.5773       | 6.7928     | 1.4409        | 3.9232             | 23.2098   | 1.1750          | 0.2877             | 2.9254             | 1.9411     | 3.5469                      | 11.0744      | 0.4254           | 0.6293      | 19.0447                 | 16.3774            | 9.5363              | 6.8393        |
| 0.2618 | 8000  | 6.8114        | 8.9620          | 5.1417       | 6.5466     | 1.4834        | 3.7100             | 22.9815   | 1.0679          | 0.2942             | 2.7687             | 2.0211     | 3.6063                      | 11.3424      | 0.4447           | 0.6223      | 19.1836                 | 16.5669            | 9.8785              | 6.8528        |
| 0.2945 | 9000  | 6.5487        | 8.6320          | 4.8710       | 6.5144     | 1.4156        | 3.5712             | 22.9660   | 1.0261          | 0.3051             | 3.0898             | 1.9981     | 3.4305                      | 11.1448      | 0.3729           | 0.5814      | 18.8865                 | 15.8581            | 9.5213              | 6.7567        |
| 0.3272 | 10000 | 6.7398        | 8.5630          | 4.7179       | 6.5025     | 1.3931        | 3.5699             | 22.5319   | 0.9916          | 0.2870             | 3.3385             | 1.9580     | 3.5807                      | 11.2592      | 0.4155           | 0.6009      | 19.1387                 | 16.6836            | 9.6300              | 6.6613        |
| 0.3599 | 11000 | 6.3915        | 8.4041          | 4.8985       | 6.2787     | 1.4081        | 3.5082             | 22.3204   | 0.9554          | 0.2916             | 2.9365             | 2.0176     | 3.3900                      | 11.2956      | 0.3902           | 0.5783      | 18.6448                 | 16.1241            | 9.5388              | 6.7295        |
| 0.3927 | 12000 | 6.5902        | 8.1888          | 4.7326       | 6.1930     | 1.4550        | 3.4999             | 22.1070   | 0.9736          | 0.2935             | 2.9612             | 1.9449     | 3.3281                      | 11.0477      | 0.3821           | 0.5696      | 18.3227                 | 16.1848            | 9.4772              | 7.0029        |
| 0.4254 | 13000 | 6.341         | 8.1827          | 4.3838       | 6.1052     | 1.4165        | 3.3944             | 21.9552   | 0.9076          | 0.2991             | 3.2272             | 1.9822     | 3.3494                      | 11.1891      | 0.3790           | 0.5600      | 18.4394                 | 15.9000            | 9.5644              | 6.9056        |
| 0.4581 | 14000 | 6.2067        | 8.1549          | 4.4833       | 6.0765     | 1.4055        | 3.3903             | 21.4785   | 0.8962          | 0.2919             | 2.8893             | 1.9540     | 3.3078                      | 11.2100      | 0.3569           | 0.5461      | 18.7667                 | 16.2978            | 9.2310              | 7.1290        |
| 0.4908 | 15000 | 6.2237        | 8.0711          | 4.4755       | 6.0087     | 1.3185        | 3.2888             | 21.3689   | 0.8433          | 0.2861             | 3.0129             | 1.9084     | 3.3279                      | 11.1236      | 0.3730           | 0.5553      | 18.2711                 | 15.7648            | 9.5295              | 7.0092        |
| 0.5236 | 16000 | 6.1058        | 8.0282          | 4.5076       | 5.8760     | 1.4234        | 3.3046             | 21.3568   | 0.8298          | 0.2826             | 2.8404             | 1.8920     | 3.2918                      | 11.1140      | 0.3811           | 0.5550      | 18.2899                 | 15.8630            | 9.4807              | 6.7585        |
| 0.5563 | 17000 | 6.3038        | 7.8679          | 4.4780       | 5.8461     | 1.4016        | 3.2279             | 21.0624   | 0.8205          | 0.2804             | 3.1359             | 1.9066     | 3.3205                      | 11.0882      | 0.3913           | 0.5569      | 18.0693                 | 15.7346            | 9.2854              | 6.9239        |
| 0.5890 | 18000 | 5.9824        | 7.7827          | 4.3199       | 5.7441     | 1.3582        | 3.1982             | 21.2444   | 0.8046          | 0.2797             | 2.7466             | 1.8717     | 3.3112                      | 11.0553      | 0.3922           | 0.5568      | 18.0357                 | 15.6732            | 9.6404              | 6.8331        |
| 0.6217 | 19000 | 6.0275        | 7.7201          | 4.3591       | 5.8132     | 1.3466        | 3.1888             | 20.9311   | 0.8019          | 0.2765             | 2.7674             | 1.8670     | 3.3082                      | 10.9725      | 0.3996           | 0.5560      | 18.6346                 | 16.2965            | 9.3774              | 6.9957        |
| 0.6545 | 20000 | 6.1161        | 7.6429          | 4.2702       | 5.7298     | 1.3670        | 3.1433             | 20.8899   | 0.7871          | 0.2761             | 2.7486             | 1.9230     | 3.2958                      | 11.0207      | 0.3516           | 0.5361      | 18.2297                 | 15.6363            | 9.6376              | 7.1608        |
| 0.6872 | 21000 | 5.9608        | 7.5852          | 4.2419       | 5.7760     | 1.3838        | 3.1878             | 20.9966   | 0.7837          | 0.2761             | 2.7098             | 1.8715     | 3.2293                      | 10.8935      | 0.3514           | 0.5307      | 18.1424                 | 15.5101            | 9.5346              | 7.0668        |
| 0.7199 | 22000 | 5.7594        | 7.5562          | 4.1123       | 5.6151     | 1.3605        | 3.0954             | 21.0032   | 0.7640          | 0.2769             | 2.6019             | 1.8378     | 3.2377                      | 11.0744      | 0.3676           | 0.5431      | 18.2222                 | 15.7103            | 9.8826              | 7.2662        |
| 0.7526 | 23000 | 5.7118        | 7.4714          | 4.0531       | 5.5998     | 1.3546        | 3.0778             | 20.8820   | 0.7518          | 0.2800             | 2.7544             | 1.8756     | 3.2316                      | 10.9986      | 0.3571           | 0.5334      | 18.4476                 | 15.7161            | 9.6617              | 7.3730        |
| 0.7853 | 24000 | 5.8024        | 7.4414          | 4.0829       | 5.6335     | 1.3383        | 3.0710             | 20.8217   | 0.7487          | 0.2713             | 2.6091             | 1.8695     | 3.2365                      | 10.9929      | 0.3419           | 0.5213      | 18.4064                 | 15.7831            | 9.7747              | 7.4290        |
| 0.8181 | 25000 | 5.8608        | 7.4348          | 4.0571       | 5.5651     | 1.3294        | 3.0518             | 20.6831   | 0.7393          | 0.2784             | 2.6330             | 1.8293     | 3.2197                      | 10.9416      | 0.3484           | 0.5213      | 18.6359                 | 15.8463            | 9.6883              | 7.4697        |
| 0.8508 | 26000 | 5.742         | 7.4188          | 3.9483       | 5.4911     | 1.3288        | 3.0402             | 20.7187   | 0.7376          | 0.2772             | 2.6812             | 1.8540     | 3.2415                      | 10.9619      | 0.3560           | 0.5323      | 18.6388                 | 15.7688            | 9.6707              | 7.3793        |
| 0.8835 | 27000 | 5.7429        | 7.3956          | 3.9016       | 5.4393     | 1.3277        | 3.0129             | 20.6748   | 0.7314          | 0.2820             | 2.6526             | 1.8798     | 3.1869                      | 10.8744      | 0.3435           | 0.5228      | 18.5191                 | 15.7264            | 9.5707              | 7.4266        |
| 0.9162 | 28000 | 5.7825        | 7.3748          | 3.9100       | 5.4261     | 1.3420        | 3.0142             | 20.6013   | 0.7263          | 0.2764             | 2.6708             | 1.8529     | 3.1748                      | 10.8951      | 0.3491           | 0.5257      | 18.4914                 | 15.5663            | 9.6552              | 7.2807        |
| 0.9490 | 29000 | 5.5179        | 7.3555          | 3.9046       | 5.3902     | 1.3283        | 2.9882             | 20.5828   | 0.7169          | 0.2732             | 2.6742             | 1.8457     | 3.1760                      | 10.9126      | 0.3494           | 0.5246      | 18.5619                 | 15.6746            | 9.6539              | 7.3694        |
| 0.9817 | 30000 | 5.4044        | 7.3390          | 3.8742       | 5.3713     | 1.3127        | 2.9796             | 20.5703   | 0.7120          | 0.2669             | 2.5612             | 1.8536     | 3.1602                      | 10.9068      | 0.3464           | 0.5229      | 18.5389                 | 15.6788            | 9.5690              | 7.4148        |
| 1.0000 | 30560 | -             | 7.3346          | 3.8728       | 5.3680     | 1.3066        | 2.9780             | 20.5635   | 0.7107          | 0.2672             | 2.5046             | 1.8514     | 3.1596                      | 10.9153      | 0.3467           | 0.5233      | 18.5525                 | 15.6815            | 9.5687              | 7.4302        |

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.506 kWh
- **Carbon Emitted**: 0.197 kg of CO2
- **Hours Used**: 3.163 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.3.0.dev0
- Transformers: 4.45.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.0
- Datasets: 2.20.0
- Tokenizers: 0.20.1-dev.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->