|
import random |
|
import logging |
|
from datasets import load_dataset, Dataset, DatasetDict |
|
from sentence_transformers import ( |
|
SentenceTransformer, |
|
SentenceTransformerTrainer, |
|
SentenceTransformerTrainingArguments, |
|
SentenceTransformerModelCardData, |
|
) |
|
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss |
|
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers |
|
from sentence_transformers.models.StaticEmbedding import StaticEmbedding |
|
|
|
from transformers import AutoTokenizer |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO |
|
) |
|
random.seed(12) |
|
|
|
|
|
def load_train_eval_datasets(): |
|
""" |
|
Either load the train and eval datasets from disk or load them from the datasets library & save them to disk. |
|
|
|
Upon saving to disk, we quit() to ensure that the datasets are not loaded into memory before training. |
|
""" |
|
try: |
|
train_dataset = DatasetDict.load_from_disk("datasets/train_dataset") |
|
eval_dataset = DatasetDict.load_from_disk("datasets/eval_dataset") |
|
return train_dataset, eval_dataset |
|
except FileNotFoundError: |
|
print("Loading wikititles dataset...") |
|
wikititles_dataset = load_dataset("sentence-transformers/parallel-sentences-wikititles", split="train") |
|
wikititles_dataset_dict = wikititles_dataset.train_test_split(test_size=10_000, seed=12) |
|
wikititles_train_dataset: Dataset = wikititles_dataset_dict["train"] |
|
wikititles_eval_dataset: Dataset = wikititles_dataset_dict["test"] |
|
print("Loaded wikititles dataset.") |
|
|
|
print("Loading tatoeba dataset...") |
|
tatoeba_dataset = load_dataset("sentence-transformers/parallel-sentences-tatoeba", "all", split="train") |
|
tatoeba_dataset_dict = tatoeba_dataset.train_test_split(test_size=10_000, seed=12) |
|
tatoeba_train_dataset: Dataset = tatoeba_dataset_dict["train"] |
|
tatoeba_eval_dataset: Dataset = tatoeba_dataset_dict["test"] |
|
print("Loaded tatoeba dataset.") |
|
|
|
print("Loading talks dataset...") |
|
talks_dataset = load_dataset("sentence-transformers/parallel-sentences-talks", "all", split="train") |
|
talks_dataset_dict = talks_dataset.train_test_split(test_size=10_000, seed=12) |
|
talks_train_dataset: Dataset = talks_dataset_dict["train"] |
|
talks_eval_dataset: Dataset = talks_dataset_dict["test"] |
|
print("Loaded talks dataset.") |
|
|
|
print("Loading europarl dataset...") |
|
europarl_dataset = load_dataset("sentence-transformers/parallel-sentences-europarl", "all", split="train[:5000000]") |
|
europarl_dataset_dict = europarl_dataset.train_test_split(test_size=10_000, seed=12) |
|
europarl_train_dataset: Dataset = europarl_dataset_dict["train"] |
|
europarl_eval_dataset: Dataset = europarl_dataset_dict["test"] |
|
print("Loaded europarl dataset.") |
|
|
|
print("Loading global voices dataset...") |
|
global_voices_dataset = load_dataset("sentence-transformers/parallel-sentences-global-voices", "all", split="train") |
|
global_voices_dataset_dict = global_voices_dataset.train_test_split(test_size=10_000, seed=12) |
|
global_voices_train_dataset: Dataset = global_voices_dataset_dict["train"] |
|
global_voices_eval_dataset: Dataset = global_voices_dataset_dict["test"] |
|
print("Loaded global voices dataset.") |
|
|
|
print("Loading jw300 dataset...") |
|
jw300_dataset = load_dataset("sentence-transformers/parallel-sentences-jw300", "all", split="train") |
|
jw300_dataset_dict = jw300_dataset.train_test_split(test_size=10_000, seed=12) |
|
jw300_train_dataset: Dataset = jw300_dataset_dict["train"] |
|
jw300_eval_dataset: Dataset = jw300_dataset_dict["test"] |
|
print("Loaded jw300 dataset.") |
|
|
|
print("Loading muse dataset...") |
|
muse_dataset = load_dataset("sentence-transformers/parallel-sentences-muse", split="train") |
|
muse_dataset_dict = muse_dataset.train_test_split(test_size=10_000, seed=12) |
|
muse_train_dataset: Dataset = muse_dataset_dict["train"] |
|
muse_eval_dataset: Dataset = muse_dataset_dict["test"] |
|
print("Loaded muse dataset.") |
|
|
|
print("Loading wikimatrix dataset...") |
|
wikimatrix_dataset = load_dataset("sentence-transformers/parallel-sentences-wikimatrix", "all", split="train") |
|
wikimatrix_dataset_dict = wikimatrix_dataset.train_test_split(test_size=10_000, seed=12) |
|
wikimatrix_train_dataset: Dataset = wikimatrix_dataset_dict["train"] |
|
wikimatrix_eval_dataset: Dataset = wikimatrix_dataset_dict["test"] |
|
print("Loaded wikimatrix dataset.") |
|
|
|
print("Loading opensubtitles dataset...") |
|
opensubtitles_dataset = load_dataset("sentence-transformers/parallel-sentences-opensubtitles", "all", split="train[:5000000]") |
|
opensubtitles_dataset_dict = opensubtitles_dataset.train_test_split(test_size=10_000, seed=12) |
|
opensubtitles_train_dataset: Dataset = opensubtitles_dataset_dict["train"] |
|
opensubtitles_eval_dataset: Dataset = opensubtitles_dataset_dict["test"] |
|
print("Loaded opensubtitles dataset.") |
|
|
|
print("Loading stackexchange dataset...") |
|
stackexchange_dataset = load_dataset("sentence-transformers/stackexchange-duplicates", "post-post-pair", split="train") |
|
stackexchange_dataset_dict = stackexchange_dataset.train_test_split(test_size=10_000, seed=12) |
|
stackexchange_train_dataset: Dataset = stackexchange_dataset_dict["train"] |
|
stackexchange_eval_dataset: Dataset = stackexchange_dataset_dict["test"] |
|
print("Loaded stackexchange dataset.") |
|
|
|
print("Loading quora dataset...") |
|
quora_dataset = load_dataset("sentence-transformers/quora-duplicates", "triplet", split="train") |
|
quora_dataset_dict = quora_dataset.train_test_split(test_size=10_000, seed=12) |
|
quora_train_dataset: Dataset = quora_dataset_dict["train"] |
|
quora_eval_dataset: Dataset = quora_dataset_dict["test"] |
|
print("Loaded quora dataset.") |
|
|
|
print("Loading wikianswers duplicates dataset...") |
|
wikianswers_duplicates_dataset = load_dataset("sentence-transformers/wikianswers-duplicates", split="train[:10000000]") |
|
wikianswers_duplicates_dict = wikianswers_duplicates_dataset.train_test_split(test_size=10_000, seed=12) |
|
wikianswers_duplicates_train_dataset: Dataset = wikianswers_duplicates_dict["train"] |
|
wikianswers_duplicates_eval_dataset: Dataset = wikianswers_duplicates_dict["test"] |
|
print("Loaded wikianswers duplicates dataset.") |
|
|
|
print("Loading all nli dataset...") |
|
all_nli_train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train") |
|
all_nli_eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev") |
|
print("Loaded all nli dataset.") |
|
|
|
print("Loading simple wiki dataset...") |
|
simple_wiki_dataset = load_dataset("sentence-transformers/simple-wiki", split="train") |
|
simple_wiki_dataset_dict = simple_wiki_dataset.train_test_split(test_size=10_000, seed=12) |
|
simple_wiki_train_dataset: Dataset = simple_wiki_dataset_dict["train"] |
|
simple_wiki_eval_dataset: Dataset = simple_wiki_dataset_dict["test"] |
|
print("Loaded simple wiki dataset.") |
|
|
|
print("Loading altlex dataset...") |
|
altlex_dataset = load_dataset("sentence-transformers/altlex", split="train") |
|
altlex_dataset_dict = altlex_dataset.train_test_split(test_size=10_000, seed=12) |
|
altlex_train_dataset: Dataset = altlex_dataset_dict["train"] |
|
altlex_eval_dataset: Dataset = altlex_dataset_dict["test"] |
|
print("Loaded altlex dataset.") |
|
|
|
print("Loading flickr30k captions dataset...") |
|
flickr30k_captions_dataset = load_dataset("sentence-transformers/flickr30k-captions", split="train") |
|
flickr30k_captions_dataset_dict = flickr30k_captions_dataset.train_test_split(test_size=10_000, seed=12) |
|
flickr30k_captions_train_dataset: Dataset = flickr30k_captions_dataset_dict["train"] |
|
flickr30k_captions_eval_dataset: Dataset = flickr30k_captions_dataset_dict["test"] |
|
print("Loaded flickr30k captions dataset.") |
|
|
|
print("Loading coco captions dataset...") |
|
coco_captions_dataset = load_dataset("sentence-transformers/coco-captions", split="train") |
|
coco_captions_dataset_dict = coco_captions_dataset.train_test_split(test_size=10_000, seed=12) |
|
coco_captions_train_dataset: Dataset = coco_captions_dataset_dict["train"] |
|
coco_captions_eval_dataset: Dataset = coco_captions_dataset_dict["test"] |
|
print("Loaded coco captions dataset.") |
|
|
|
print("Loading nli for simcse dataset...") |
|
nli_for_simcse_dataset = load_dataset("sentence-transformers/nli-for-simcse", "triplet", split="train") |
|
nli_for_simcse_dataset_dict = nli_for_simcse_dataset.train_test_split(test_size=10_000, seed=12) |
|
nli_for_simcse_train_dataset: Dataset = nli_for_simcse_dataset_dict["train"] |
|
nli_for_simcse_eval_dataset: Dataset = nli_for_simcse_dataset_dict["test"] |
|
print("Loaded nli for simcse dataset.") |
|
|
|
print("Loading negation dataset...") |
|
negation_dataset = load_dataset("jinaai/negation-dataset", split="train") |
|
negation_dataset_dict = negation_dataset.train_test_split(test_size=100, seed=12) |
|
negation_train_dataset: Dataset = negation_dataset_dict["train"] |
|
negation_eval_dataset: Dataset = negation_dataset_dict["test"] |
|
print("Loaded negation dataset.") |
|
|
|
train_dataset = DatasetDict({ |
|
"wikititles": wikititles_train_dataset, |
|
"tatoeba": tatoeba_train_dataset, |
|
"talks": talks_train_dataset, |
|
"europarl": europarl_train_dataset, |
|
"global_voices": global_voices_train_dataset, |
|
"jw300": jw300_train_dataset, |
|
"muse": muse_train_dataset, |
|
"wikimatrix": wikimatrix_train_dataset, |
|
"opensubtitles": opensubtitles_train_dataset, |
|
"stackexchange": stackexchange_train_dataset, |
|
"quora": quora_train_dataset, |
|
"wikianswers_duplicates": wikianswers_duplicates_train_dataset, |
|
"all_nli": all_nli_train_dataset, |
|
"simple_wiki": simple_wiki_train_dataset, |
|
"altlex": altlex_train_dataset, |
|
"flickr30k_captions": flickr30k_captions_train_dataset, |
|
"coco_captions": coco_captions_train_dataset, |
|
"nli_for_simcse": nli_for_simcse_train_dataset, |
|
"negation": negation_train_dataset, |
|
}) |
|
eval_dataset = DatasetDict({ |
|
"wikititles": wikititles_eval_dataset, |
|
"tatoeba": tatoeba_eval_dataset, |
|
"talks": talks_eval_dataset, |
|
"europarl": europarl_eval_dataset, |
|
"global_voices": global_voices_eval_dataset, |
|
"jw300": jw300_eval_dataset, |
|
"muse": muse_eval_dataset, |
|
"wikimatrix": wikimatrix_eval_dataset, |
|
"opensubtitles": opensubtitles_eval_dataset, |
|
"stackexchange": stackexchange_eval_dataset, |
|
"quora": quora_eval_dataset, |
|
"wikianswers_duplicates": wikianswers_duplicates_eval_dataset, |
|
"all_nli": all_nli_eval_dataset, |
|
"simple_wiki": simple_wiki_eval_dataset, |
|
"altlex": altlex_eval_dataset, |
|
"flickr30k_captions": flickr30k_captions_eval_dataset, |
|
"coco_captions": coco_captions_eval_dataset, |
|
"nli_for_simcse": nli_for_simcse_eval_dataset, |
|
"negation": negation_eval_dataset, |
|
}) |
|
|
|
train_dataset.save_to_disk("datasets/train_dataset") |
|
eval_dataset.save_to_disk("datasets/eval_dataset") |
|
|
|
|
|
|
|
quit() |
|
|
|
def main(): |
|
|
|
static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained("google-bert/bert-base-multilingual-uncased"), embedding_dim=1024) |
|
model = SentenceTransformer( |
|
modules=[static_embedding], |
|
model_card_data=SentenceTransformerModelCardData( |
|
license="apache-2.0", |
|
model_name="Static Embeddings with BERT Multilingual uncased tokenizer finetuned on various datasets", |
|
), |
|
) |
|
|
|
|
|
train_dataset, eval_dataset = load_train_eval_datasets() |
|
print(train_dataset) |
|
|
|
|
|
loss = MultipleNegativesRankingLoss(model) |
|
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024]) |
|
|
|
|
|
run_name = "static-similarity-mrl-multilingual-v1" |
|
args = SentenceTransformerTrainingArguments( |
|
|
|
output_dir=f"models/{run_name}", |
|
|
|
num_train_epochs=1, |
|
per_device_train_batch_size=2048, |
|
per_device_eval_batch_size=2048, |
|
learning_rate=2e-1, |
|
warmup_ratio=0.1, |
|
fp16=False, |
|
bf16=True, |
|
batch_sampler=BatchSamplers.NO_DUPLICATES, |
|
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL, |
|
|
|
eval_strategy="steps", |
|
eval_steps=1000, |
|
save_strategy="steps", |
|
save_steps=1000, |
|
save_total_limit=2, |
|
logging_steps=1000, |
|
logging_first_step=True, |
|
run_name=run_name, |
|
) |
|
|
|
|
|
trainer = SentenceTransformerTrainer( |
|
model=model, |
|
args=args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
loss=loss, |
|
) |
|
trainer.train() |
|
|
|
|
|
model.save_pretrained(f"models/{run_name}/final") |
|
|
|
|
|
model.push_to_hub(run_name, private=True) |
|
|
|
if __name__ == "__main__": |
|
main() |