--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: glue-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8553921568627451 - name: F1 type: f1 value: 0.897391304347826 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mrpc split: validation metrics: - name: Accuracy type: accuracy value: 0.8553921568627451 verified: true - name: Precision type: precision value: 0.8716216216216216 verified: true - name: Recall type: recall value: 0.9247311827956989 verified: true - name: AUC type: auc value: 0.90464282737351 verified: true - name: F1 type: f1 value: 0.897391304347826 verified: true - name: loss type: loss value: 0.6564616560935974 verified: true --- # glue-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6566 - Accuracy: 0.8554 - F1: 0.8974 - Combined Score: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3