Dummy handler
Browse files- handler.py +9 -8
handler.py
CHANGED
@@ -1,18 +1,19 @@
|
|
1 |
from typing import Any, List, Dict
|
2 |
import torch
|
3 |
|
4 |
-
from chronos import ChronosPipeline
|
5 |
|
6 |
|
7 |
class EndpointHandler:
|
8 |
-
def __init__(self) -> None:
|
9 |
-
self.pipeline = ChronosPipeline.from_pretrained("amazon/chronos-t5-tiny")
|
|
|
10 |
|
11 |
def __call__(self, data: Any) -> List[Dict[str, float]]:
|
12 |
inputs = data.pop("inputs")
|
13 |
-
# parameters = data.pop("parameters", {"prediction_length"})
|
14 |
|
15 |
-
forecast = self.pipeline.predict(
|
16 |
-
|
17 |
-
)
|
18 |
-
return {"
|
|
|
1 |
from typing import Any, List, Dict
|
2 |
import torch
|
3 |
|
4 |
+
# from chronos import ChronosPipeline
|
5 |
|
6 |
|
7 |
class EndpointHandler:
|
8 |
+
def __init__(self, path: str = "") -> None:
|
9 |
+
# self.pipeline = ChronosPipeline.from_pretrained("amazon/chronos-t5-tiny")
|
10 |
+
pass
|
11 |
|
12 |
def __call__(self, data: Any) -> List[Dict[str, float]]:
|
13 |
inputs = data.pop("inputs")
|
14 |
+
# # parameters = data.pop("parameters", {"prediction_length"})
|
15 |
|
16 |
+
# forecast = self.pipeline.predict(
|
17 |
+
# torch.tensor(inputs["context"]), prediction_length=5
|
18 |
+
# )
|
19 |
+
return {"response": [1, 2, 3]}
|