--- license: mit datasets: - squad_v2 - squad language: - en library_name: transformers pipeline_tag: question-answering tags: - deberta - deberta-v3 - mdeberta - question-answering - squad - squad_v2 model-index: - name: sjrhuschlee/mdeberta-v3-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 80.3841 name: Exact Match - type: f1 value: 83.8713 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 83.7843 name: Exact Match - type: f1 value: 90.9635 name: F1 --- # mdeberta-v3-base for Extractive QA This is the [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. ## Overview **Language model:** mdeberta-v3-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA T4 ### Model Usage ```python import torch from transformers import( AutoModelForQuestionAnswering, AutoTokenizer, pipeline ) model_name = "sjrhuschlee/mdeberta-v3-base-squad2" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'} # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) question = 'Where do I live?' context = 'My name is Sarah and I live in London' encoding = tokenizer(question, context, return_tensors="pt") start_scores, end_scores = model( encoding["input_ids"], attention_mask=encoding["attention_mask"], return_dict=False ) all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1] answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # 'London' ``` ### Metrics ```bash # Squad v2 { "eval_HasAns_exact": 77.7327935222672, "eval_HasAns_f1": 84.7172608568916, "eval_HasAns_total": 5928, "eval_NoAns_exact": 83.02775441547519, "eval_NoAns_f1": 83.02775441547519, "eval_NoAns_total": 5945, "eval_best_exact": 80.38406468457846, "eval_best_exact_thresh": 0.0, "eval_best_f1": 83.87129810154576, "eval_best_f1_thresh": 0.0, "eval_exact": 80.38406468457846, "eval_f1": 83.87129810154582, "eval_runtime": 221.4855, "eval_samples": 12054, "eval_samples_per_second": 54.423, "eval_steps_per_second": 2.271, "eval_total": 11873 } # Squad { "eval_exact_match": 83.78429517502366, "eval_f1": 90.96354972948996, "eval_runtime": 197.0364, "eval_samples": 10715, "eval_samples_per_second": 54.381, "eval_steps_per_second": 2.269 } ```