--- library_name: transformers license: other base_model: facebook/mask2former-swin-tiny-coco-instance tags: - image-segmentation - instance-segmentation - vision - generated_from_trainer model-index: - name: finetune-instance-segmentation-ade20k-mini-mask2former results: [] --- # finetune-instance-segmentation-ade20k-mini-mask2former This model is a fine-tuned version of [facebook/mask2former-swin-tiny-coco-instance](https://huggingface.co/facebook/mask2former-swin-tiny-coco-instance) on the qubvel-hf/ade20k-mini dataset. It achieves the following results on the evaluation set: - Loss: 31.0067 - Map: 0.2061 - Map 50: 0.4076 - Map 75: 0.1946 - Map Small: 0.1368 - Map Medium: 0.623 - Map Large: 0.82 - Mar 1: 0.0921 - Mar 10: 0.2488 - Mar 100: 0.2856 - Mar Small: 0.2105 - Mar Medium: 0.7164 - Mar Large: 0.8705 - Map Person: 0.1413 - Mar 100 Person: 0.2035 - Map Car: 0.2709 - Mar 100 Car: 0.3678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Person | Mar 100 Person | Map Car | Mar 100 Car | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------:|:--------------:|:-------:|:-----------:| | 37.3934 | 1.0 | 100 | 33.6332 | 0.1981 | 0.3956 | 0.1799 | 0.1285 | 0.6173 | 0.7992 | 0.0896 | 0.2453 | 0.2821 | 0.2074 | 0.7135 | 0.8354 | 0.1349 | 0.2001 | 0.2613 | 0.3641 | | 29.0441 | 2.0 | 200 | 31.0067 | 0.2061 | 0.4076 | 0.1946 | 0.1368 | 0.623 | 0.82 | 0.0921 | 0.2488 | 0.2856 | 0.2105 | 0.7164 | 0.8705 | 0.1413 | 0.2035 | 0.2709 | 0.3678 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.0+cu121 - Datasets 2.19.1 - Tokenizers 0.21.0