Spaces:
Sleeping
Sleeping
bhaskarEEN
commited on
Commit
·
25852f1
0
Parent(s):
- gemini pro testing
Browse files- .gitignore +1 -0
- app.py +82 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
App to take in image and output a list of objects in the image
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import google.generativeai as genai
|
9 |
+
import gradio as gr
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
load_dotenv() # Load environment variables from .env file
|
13 |
+
|
14 |
+
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
15 |
+
|
16 |
+
input_prompt = """
|
17 |
+
Extract the objects in the provided image and output them in a list in alphabetical order
|
18 |
+
"""
|
19 |
+
|
20 |
+
# Set up the model
|
21 |
+
generation_config = {
|
22 |
+
"temperature": 0,
|
23 |
+
"top_p": 1,
|
24 |
+
"top_k": 32,
|
25 |
+
"max_output_tokens": 4096,
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
safety_settings = [
|
30 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
31 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
32 |
+
{
|
33 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
34 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
38 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
|
39 |
+
},
|
40 |
+
]
|
41 |
+
|
42 |
+
model = genai.GenerativeModel(
|
43 |
+
model_name="gemini-pro-vision",
|
44 |
+
generation_config=generation_config,
|
45 |
+
safety_settings=safety_settings,
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
def input_image_setup(file_loc):
|
50 |
+
if not (img := Path(file_loc)).exists():
|
51 |
+
raise FileNotFoundError(f"Could not find image: {img}")
|
52 |
+
|
53 |
+
image_parts = [{"mime_type": "image/jpeg", "data": Path(file_loc).read_bytes()}]
|
54 |
+
return image_parts
|
55 |
+
|
56 |
+
|
57 |
+
def generate_gemini_response(input_prompt, image_loc):
|
58 |
+
image_prompt = input_image_setup(image_loc)
|
59 |
+
prompt_parts = [input_prompt, image_prompt[0]]
|
60 |
+
response = model.generate_content(prompt_parts)
|
61 |
+
output = "The objects in the image are: \n" + response.text
|
62 |
+
# print(response.text)
|
63 |
+
return output
|
64 |
+
|
65 |
+
|
66 |
+
def upload_file(file_path):
|
67 |
+
# print(file_path)
|
68 |
+
output = generate_gemini_response(input_prompt, file_path)
|
69 |
+
return file_path, output
|
70 |
+
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
header = gr.Label("Gemini Pro Vision testing")
|
74 |
+
image_output = gr.Image()
|
75 |
+
submit = gr.UploadButton(label="Click to upload the image to be studied", file_count="single", file_types=["image"])
|
76 |
+
output = gr.Textbox(label="Output")
|
77 |
+
print("here")
|
78 |
+
combined_output = [image_output, output]
|
79 |
+
submit.upload(upload_file, submit, combined_output)
|
80 |
+
|
81 |
+
|
82 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio==4.31.5
|
2 |
+
google-generativeai==0.5.4
|