diff --git "a/MagicQuill/brushnet/unet_2d_blocks.py" "b/MagicQuill/brushnet/unet_2d_blocks.py" deleted file mode 100644--- "a/MagicQuill/brushnet/unet_2d_blocks.py" +++ /dev/null @@ -1,3907 +0,0 @@ -# Copyright 2024 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from typing import Any, Dict, Optional, Tuple, Union - -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn - -from diffusers.utils import deprecate, is_torch_version, logging -from diffusers.utils.torch_utils import apply_freeu -from diffusers.models.activations import get_activation -from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 -from diffusers.models.normalization import AdaGroupNorm -from diffusers.models.resnet import ( - Downsample2D, - FirDownsample2D, - FirUpsample2D, - KDownsample2D, - KUpsample2D, - ResnetBlock2D, - ResnetBlockCondNorm2D, - Upsample2D, -) -from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel -from diffusers.models.transformers.transformer_2d import Transformer2DModel - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - - -def get_down_block( - down_block_type: str, - num_layers: int, - in_channels: int, - out_channels: int, - temb_channels: int, - add_downsample: bool, - resnet_eps: float, - resnet_act_fn: str, - transformer_layers_per_block: int = 1, - num_attention_heads: Optional[int] = None, - resnet_groups: Optional[int] = None, - cross_attention_dim: Optional[int] = None, - downsample_padding: Optional[int] = None, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - attention_type: str = "default", - resnet_skip_time_act: bool = False, - resnet_out_scale_factor: float = 1.0, - cross_attention_norm: Optional[str] = None, - attention_head_dim: Optional[int] = None, - downsample_type: Optional[str] = None, - dropout: float = 0.0, -): - # If attn head dim is not defined, we default it to the number of heads - if attention_head_dim is None: - logger.warning( - f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." - ) - attention_head_dim = num_attention_heads - - down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type - if down_block_type == "DownBlock2D": - return DownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "ResnetDownsampleBlock2D": - return ResnetDownsampleBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - ) - elif down_block_type == "AttnDownBlock2D": - if add_downsample is False: - downsample_type = None - else: - downsample_type = downsample_type or "conv" # default to 'conv' - return AttnDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - downsample_type=downsample_type, - ) - elif down_block_type == "CrossAttnDownBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") - return CrossAttnDownBlock2D( - num_layers=num_layers, - transformer_layers_per_block=transformer_layers_per_block, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads, - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_type=attention_type, - ) - elif down_block_type == "SimpleCrossAttnDownBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") - return SimpleCrossAttnDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - ) - elif down_block_type == "SkipDownBlock2D": - return SkipDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - downsample_padding=downsample_padding, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "AttnSkipDownBlock2D": - return AttnSkipDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "DownEncoderBlock2D": - return DownEncoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "AttnDownEncoderBlock2D": - return AttnDownEncoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "KDownBlock2D": - return KDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - ) - elif down_block_type == "KCrossAttnDownBlock2D": - return KCrossAttnDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - add_self_attention=True if not add_downsample else False, - ) - raise ValueError(f"{down_block_type} does not exist.") - - -def get_mid_block( - mid_block_type: str, - temb_channels: int, - in_channels: int, - resnet_eps: float, - resnet_act_fn: str, - resnet_groups: int, - output_scale_factor: float = 1.0, - transformer_layers_per_block: int = 1, - num_attention_heads: Optional[int] = None, - cross_attention_dim: Optional[int] = None, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - mid_block_only_cross_attention: bool = False, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - attention_type: str = "default", - resnet_skip_time_act: bool = False, - cross_attention_norm: Optional[str] = None, - attention_head_dim: Optional[int] = 1, - dropout: float = 0.0, -): - if mid_block_type == "UNetMidBlock2DCrossAttn": - return UNetMidBlock2DCrossAttn( - transformer_layers_per_block=transformer_layers_per_block, - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - resnet_time_scale_shift=resnet_time_scale_shift, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads, - resnet_groups=resnet_groups, - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": - return UNetMidBlock2DSimpleCrossAttn( - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - only_cross_attention=mid_block_only_cross_attention, - cross_attention_norm=cross_attention_norm, - ) - elif mid_block_type == "UNetMidBlock2D": - return UNetMidBlock2D( - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - num_layers=0, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - add_attention=False, - ) - elif mid_block_type == "MidBlock2D": - return MidBlock2D( - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - resnet_time_scale_shift=resnet_time_scale_shift, - resnet_groups=resnet_groups, - use_linear_projection=use_linear_projection, - ) - elif mid_block_type is None: - return None - else: - raise ValueError(f"unknown mid_block_type : {mid_block_type}") - - -def get_up_block( - up_block_type: str, - num_layers: int, - in_channels: int, - out_channels: int, - prev_output_channel: int, - temb_channels: int, - add_upsample: bool, - resnet_eps: float, - resnet_act_fn: str, - resolution_idx: Optional[int] = None, - transformer_layers_per_block: int = 1, - num_attention_heads: Optional[int] = None, - resnet_groups: Optional[int] = None, - cross_attention_dim: Optional[int] = None, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - attention_type: str = "default", - resnet_skip_time_act: bool = False, - resnet_out_scale_factor: float = 1.0, - cross_attention_norm: Optional[str] = None, - attention_head_dim: Optional[int] = None, - upsample_type: Optional[str] = None, - dropout: float = 0.0, -) -> nn.Module: - # If attn head dim is not defined, we default it to the number of heads - if attention_head_dim is None: - logger.warning( - f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." - ) - attention_head_dim = num_attention_heads - - up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type - if up_block_type == "UpBlock2D": - return UpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif up_block_type == "ResnetUpsampleBlock2D": - return ResnetUpsampleBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - ) - elif up_block_type == "CrossAttnUpBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") - return CrossAttnUpBlock2D( - num_layers=num_layers, - transformer_layers_per_block=transformer_layers_per_block, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads, - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_type=attention_type, - ) - elif up_block_type == "SimpleCrossAttnUpBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") - return SimpleCrossAttnUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - ) - elif up_block_type == "AttnUpBlock2D": - if add_upsample is False: - upsample_type = None - else: - upsample_type = upsample_type or "conv" # default to 'conv' - - return AttnUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - upsample_type=upsample_type, - ) - elif up_block_type == "SkipUpBlock2D": - return SkipUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif up_block_type == "AttnSkipUpBlock2D": - return AttnSkipUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif up_block_type == "UpDecoderBlock2D": - return UpDecoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - temb_channels=temb_channels, - ) - elif up_block_type == "AttnUpDecoderBlock2D": - return AttnUpDecoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - temb_channels=temb_channels, - ) - elif up_block_type == "KUpBlock2D": - return KUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - ) - elif up_block_type == "KCrossAttnUpBlock2D": - return KCrossAttnUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - ) - - raise ValueError(f"{up_block_type} does not exist.") - - -class AutoencoderTinyBlock(nn.Module): - """ - Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU - blocks. - - Args: - in_channels (`int`): The number of input channels. - out_channels (`int`): The number of output channels. - act_fn (`str`): - ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. - - Returns: - `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to - `out_channels`. - """ - - def __init__(self, in_channels: int, out_channels: int, act_fn: str): - super().__init__() - act_fn = get_activation(act_fn) - self.conv = nn.Sequential( - nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), - act_fn, - nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), - act_fn, - nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), - ) - self.skip = ( - nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) - if in_channels != out_channels - else nn.Identity() - ) - self.fuse = nn.ReLU() - - def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: - return self.fuse(self.conv(x) + self.skip(x)) - - -class UNetMidBlock2D(nn.Module): - """ - A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. - - Args: - in_channels (`int`): The number of input channels. - temb_channels (`int`): The number of temporal embedding channels. - dropout (`float`, *optional*, defaults to 0.0): The dropout rate. - num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. - resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. - resnet_time_scale_shift (`str`, *optional*, defaults to `default`): - The type of normalization to apply to the time embeddings. This can help to improve the performance of the - model on tasks with long-range temporal dependencies. - resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. - resnet_groups (`int`, *optional*, defaults to 32): - The number of groups to use in the group normalization layers of the resnet blocks. - attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. - resnet_pre_norm (`bool`, *optional*, defaults to `True`): - Whether to use pre-normalization for the resnet blocks. - add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. - attention_head_dim (`int`, *optional*, defaults to 1): - Dimension of a single attention head. The number of attention heads is determined based on this value and - the number of input channels. - output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. - - Returns: - `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, - in_channels, height, width)`. - - """ - - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", # default, spatial - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - attn_groups: Optional[int] = None, - resnet_pre_norm: bool = True, - add_attention: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - ): - super().__init__() - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - self.add_attention = add_attention - - if attn_groups is None: - attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None - - # there is always at least one resnet - if resnet_time_scale_shift == "spatial": - resnets = [ - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ] - else: - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ] - attentions = [] - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." - ) - attention_head_dim = in_channels - - for _ in range(num_layers): - if self.add_attention: - attentions.append( - Attention( - in_channels, - heads=in_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=attn_groups, - spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - else: - attentions.append(None) - - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: - hidden_states = self.resnets[0](hidden_states, temb) - for attn, resnet in zip(self.attentions, self.resnets[1:]): - if attn is not None: - hidden_states = attn(hidden_states, temb=temb) - hidden_states = resnet(hidden_states, temb) - - return hidden_states - - -class UNetMidBlock2DCrossAttn(nn.Module): - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - transformer_layers_per_block: Union[int, Tuple[int]] = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - num_attention_heads: int = 1, - output_scale_factor: float = 1.0, - cross_attention_dim: int = 1280, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - upcast_attention: bool = False, - attention_type: str = "default", - ): - super().__init__() - - self.has_cross_attention = True - self.num_attention_heads = num_attention_heads - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - - # support for variable transformer layers per block - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * num_layers - - # there is always at least one resnet - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ] - attentions = [] - - for i in range(num_layers): - if not dual_cross_attention: - attentions.append( - Transformer2DModel( - num_attention_heads, - in_channels // num_attention_heads, - in_channels=in_channels, - num_layers=transformer_layers_per_block[i], - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - use_linear_projection=use_linear_projection, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - ) - else: - attentions.append( - DualTransformer2DModel( - num_attention_heads, - in_channels // num_attention_heads, - in_channels=in_channels, - num_layers=1, - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - ) - ) - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - if cross_attention_kwargs is not None: - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - hidden_states = self.resnets[0](hidden_states, temb) - for attn, resnet in zip(self.attentions, self.resnets[1:]): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - else: - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - hidden_states = resnet(hidden_states, temb) - - return hidden_states - - -class UNetMidBlock2DSimpleCrossAttn(nn.Module): - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - cross_attention_dim: int = 1280, - skip_time_act: bool = False, - only_cross_attention: bool = False, - cross_attention_norm: Optional[str] = None, - ): - super().__init__() - - self.has_cross_attention = True - - self.attention_head_dim = attention_head_dim - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - - self.num_heads = in_channels // self.attention_head_dim - - # there is always at least one resnet - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ] - attentions = [] - - for _ in range(num_layers): - processor = ( - AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() - ) - - attentions.append( - Attention( - query_dim=in_channels, - cross_attention_dim=in_channels, - heads=self.num_heads, - dim_head=self.attention_head_dim, - added_kv_proj_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - bias=True, - upcast_softmax=True, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - processor=processor, - ) - ) - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - if attention_mask is None: - # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. - mask = None if encoder_hidden_states is None else encoder_attention_mask - else: - # when attention_mask is defined: we don't even check for encoder_attention_mask. - # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. - # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. - # then we can simplify this whole if/else block to: - # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask - mask = attention_mask - - hidden_states = self.resnets[0](hidden_states, temb) - for attn, resnet in zip(self.attentions, self.resnets[1:]): - # attn - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - - # resnet - hidden_states = resnet(hidden_states, temb) - - return hidden_states - - -class MidBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - use_linear_projection: bool = False, - ): - super().__init__() - - self.has_cross_attention = False - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - - # there is always at least one resnet - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ] - - for i in range(num_layers): - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - lora_scale = 1.0 - hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) - for resnet in self.resnets[1:]: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - else: - hidden_states = resnet(hidden_states, temb, scale=lora_scale) - - return hidden_states - - -class AttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - downsample_padding: int = 1, - downsample_type: str = "conv", - ): - super().__init__() - resnets = [] - attentions = [] - self.downsample_type = downsample_type - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if downsample_type == "conv": - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - elif downsample_type == "resnet": - self.downsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - down=True, - ) - ] - ) - else: - self.downsamplers = None - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb) - hidden_states = attn(hidden_states, **cross_attention_kwargs) - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - if self.downsample_type == "resnet": - hidden_states = downsampler(hidden_states, temb=temb) - else: - hidden_states = downsampler(hidden_states) - - output_states += (hidden_states,) - - return hidden_states, output_states - - -class CrossAttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - transformer_layers_per_block: Union[int, Tuple[int]] = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - num_attention_heads: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - downsample_padding: int = 1, - add_downsample: bool = True, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - attention_type: str = "default", - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - self.num_attention_heads = num_attention_heads - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * num_layers - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - if not dual_cross_attention: - attentions.append( - Transformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=transformer_layers_per_block[i], - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - ) - else: - attentions.append( - DualTransformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=1, - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - additional_residuals: Optional[torch.FloatTensor] = None, - down_block_add_samples: Optional[torch.FloatTensor] = None, - debug = False, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - - if debug: print(' XAD2: forward') - - if cross_attention_kwargs is not None: - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - blocks = list(zip(self.resnets, self.attentions)) - - for i, (resnet, attn) in enumerate(blocks): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - else: - if debug: print(' XAD2: resnet hs #', i, hidden_states.shape) - if debug and temb is not None: print(' XAD2: resnet temb #', i, temb.shape) - - hidden_states = resnet(hidden_states, temb) - - if debug: print(' XAD2: attn hs #', i, hidden_states.shape) - if debug and encoder_hidden_states is not None: print(' XAD2: attn ehs #', i, encoder_hidden_states.shape) - - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - - # apply additional residuals to the output of the last pair of resnet and attention blocks - if i == len(blocks) - 1 and additional_residuals is not None: - - if debug: print(' XAD2: add res', additional_residuals.shape) - - hidden_states = hidden_states + additional_residuals - - if down_block_add_samples is not None: - - if debug: print(' XAD2: add samples', down_block_add_samples.shape) - - hidden_states = hidden_states + down_block_add_samples.pop(0) - - if debug: print(' XAD2: output', hidden_states.shape) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - if down_block_add_samples is not None: - hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after - - output_states = output_states + (hidden_states,) - - if debug: - print(' XAD2: finish') - for st in output_states: - print(' XAD2: ',st.shape) - - return hidden_states, output_states - - -class DownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, - down_block_add_samples: Optional[torch.FloatTensor] = None, *args, **kwargs - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - if kwargs.get("debug", False): print(' D2: forward', hidden_states.shape) - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - - if kwargs.get("debug", False): print(' D2: resnet', hidden_states.shape) - - hidden_states = resnet(hidden_states, temb) - - if down_block_add_samples is not None: - hidden_states = hidden_states + down_block_add_samples.pop(0) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - if down_block_add_samples is not None: - hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after - - output_states = output_states + (hidden_states,) - - if kwargs.get("debug", False): print(' D2: finish', hidden_states.shape) - - return hidden_states, output_states - - -class DownEncoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - hidden_states = resnet(hidden_states, temb=None) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states - - -class AttnDownEncoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - resnets = [] - attentions = [] - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb=None) - hidden_states = attn(hidden_states) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states - - -class AttnSkipDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = np.sqrt(2.0), - add_downsample: bool = True, - ): - super().__init__() - self.attentions = nn.ModuleList([]) - self.resnets = nn.ModuleList([]) - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - self.resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(in_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - self.attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=32, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - if add_downsample: - self.resnet_down = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - down=True, - kernel="fir", - ) - self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) - self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) - else: - self.resnet_down = None - self.downsamplers = None - self.skip_conv = None - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - skip_sample: Optional[torch.FloatTensor] = None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb) - hidden_states = attn(hidden_states) - output_states += (hidden_states,) - - if self.downsamplers is not None: - hidden_states = self.resnet_down(hidden_states, temb) - for downsampler in self.downsamplers: - skip_sample = downsampler(skip_sample) - - hidden_states = self.skip_conv(skip_sample) + hidden_states - - output_states += (hidden_states,) - - return hidden_states, output_states, skip_sample - - -class SkipDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - output_scale_factor: float = np.sqrt(2.0), - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - self.resnets = nn.ModuleList([]) - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - self.resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(in_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - if add_downsample: - self.resnet_down = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - down=True, - kernel="fir", - ) - self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) - self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) - else: - self.resnet_down = None - self.downsamplers = None - self.skip_conv = None - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - skip_sample: Optional[torch.FloatTensor] = None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet in self.resnets: - hidden_states = resnet(hidden_states, temb) - output_states += (hidden_states,) - - if self.downsamplers is not None: - hidden_states = self.resnet_down(hidden_states, temb) - for downsampler in self.downsamplers: - skip_sample = downsampler(skip_sample) - - hidden_states = self.skip_conv(skip_sample) + hidden_states - - output_states += (hidden_states,) - - return hidden_states, output_states, skip_sample - - -class ResnetDownsampleBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - skip_time_act: bool = False, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - down=True, - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states, temb) - - output_states = output_states + (hidden_states,) - - return hidden_states, output_states - - -class SimpleCrossAttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - skip_time_act: bool = False, - only_cross_attention: bool = False, - cross_attention_norm: Optional[str] = None, - ): - super().__init__() - - self.has_cross_attention = True - - resnets = [] - attentions = [] - - self.attention_head_dim = attention_head_dim - self.num_heads = out_channels // self.attention_head_dim - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - processor = ( - AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() - ) - - attentions.append( - Attention( - query_dim=out_channels, - cross_attention_dim=out_channels, - heads=self.num_heads, - dim_head=attention_head_dim, - added_kv_proj_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - bias=True, - upcast_softmax=True, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - processor=processor, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - down=True, - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - if attention_mask is None: - # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. - mask = None if encoder_hidden_states is None else encoder_attention_mask - else: - # when attention_mask is defined: we don't even check for encoder_attention_mask. - # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. - # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. - # then we can simplify this whole if/else block to: - # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask - mask = attention_mask - - for resnet, attn in zip(self.resnets, self.attentions): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - else: - hidden_states = resnet(hidden_states, temb) - - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states, temb) - - output_states = output_states + (hidden_states,) - - return hidden_states, output_states - - -class KDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 4, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - resnet_group_size: int = 32, - add_downsample: bool = False, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - temb_channels=temb_channels, - groups=groups, - groups_out=groups_out, - eps=resnet_eps, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - # YiYi's comments- might be able to use FirDownsample2D, look into details later - self.downsamplers = nn.ModuleList([KDownsample2D()]) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - output_states += (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states, output_states - - -class KCrossAttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - cross_attention_dim: int, - dropout: float = 0.0, - num_layers: int = 4, - resnet_group_size: int = 32, - add_downsample: bool = True, - attention_head_dim: int = 64, - add_self_attention: bool = False, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - temb_channels=temb_channels, - groups=groups, - groups_out=groups_out, - eps=resnet_eps, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - attentions.append( - KAttentionBlock( - out_channels, - out_channels // attention_head_dim, - attention_head_dim, - cross_attention_dim=cross_attention_dim, - temb_channels=temb_channels, - attention_bias=True, - add_self_attention=add_self_attention, - cross_attention_norm="layer_norm", - group_size=resnet_group_size, - ) - ) - - self.resnets = nn.ModuleList(resnets) - self.attentions = nn.ModuleList(attentions) - - if add_downsample: - self.downsamplers = nn.ModuleList([KDownsample2D()]) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - for resnet, attn in zip(self.resnets, self.attentions): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - else: - hidden_states = resnet(hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - - if self.downsamplers is None: - output_states += (None,) - else: - output_states += (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states, output_states - - -class AttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: int = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - upsample_type: str = "conv", - ): - super().__init__() - resnets = [] - attentions = [] - - self.upsample_type = upsample_type - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if upsample_type == "conv": - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - elif upsample_type == "resnet": - self.upsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - up=True, - ) - ] - ) - else: - self.upsamplers = None - - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet, attn in zip(self.resnets, self.attentions): - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - hidden_states = resnet(hidden_states, temb) - hidden_states = attn(hidden_states) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - if self.upsample_type == "resnet": - hidden_states = upsampler(hidden_states, temb=temb) - else: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class CrossAttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - prev_output_channel: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - transformer_layers_per_block: Union[int, Tuple[int]] = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - num_attention_heads: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - attention_type: str = "default", - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - self.num_attention_heads = num_attention_heads - - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * num_layers - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - if not dual_cross_attention: - attentions.append( - Transformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=transformer_layers_per_block[i], - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - ) - else: - attentions.append( - DualTransformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=1, - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - upsample_size: Optional[int] = None, - attention_mask: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - return_res_samples: Optional[bool]=False, - up_block_add_samples: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - if cross_attention_kwargs is not None: - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - is_freeu_enabled = ( - getattr(self, "s1", None) - and getattr(self, "s2", None) - and getattr(self, "b1", None) - and getattr(self, "b2", None) - ) - if return_res_samples: - output_states=() - - for resnet, attn in zip(self.resnets, self.attentions): - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - - # FreeU: Only operate on the first two stages - if is_freeu_enabled: - hidden_states, res_hidden_states = apply_freeu( - self.resolution_idx, - hidden_states, - res_hidden_states, - s1=self.s1, - s2=self.s2, - b1=self.b1, - b2=self.b2, - ) - - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - else: - hidden_states = resnet(hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, upsample_size) - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) - - if return_res_samples: - return hidden_states, output_states - else: - return hidden_states - -class UpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - return_res_samples: Optional[bool]=False, - up_block_add_samples: Optional[torch.FloatTensor] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - is_freeu_enabled = ( - getattr(self, "s1", None) - and getattr(self, "s2", None) - and getattr(self, "b1", None) - and getattr(self, "b2", None) - ) - if return_res_samples: - output_states = () - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - - # FreeU: Only operate on the first two stages - if is_freeu_enabled: - hidden_states, res_hidden_states = apply_freeu( - self.resolution_idx, - hidden_states, - res_hidden_states, - s1=self.s1, - s2=self.s2, - b1=self.b1, - b2=self.b2, - ) - - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, upsample_size) - - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after - - if return_res_samples: - return hidden_states, output_states - else: - return hidden_states - - -class UpDecoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", # default, spatial - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - temb_channels: Optional[int] = None, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - input_channels = in_channels if i == 0 else out_channels - - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.resolution_idx = resolution_idx - - def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: - for resnet in self.resnets: - hidden_states = resnet(hidden_states, temb=temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class AttnUpDecoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - temb_channels: Optional[int] = None, - ): - super().__init__() - resnets = [] - attentions = [] - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - input_channels = in_channels if i == 0 else out_channels - - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None, - spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.resolution_idx = resolution_idx - - def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb=temb) - hidden_states = attn(hidden_states, temb=temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class AttnSkipUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = np.sqrt(2.0), - add_upsample: bool = True, - ): - super().__init__() - self.attentions = nn.ModuleList([]) - self.resnets = nn.ModuleList([]) - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - self.resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(resnet_in_channels + res_skip_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - self.attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=32, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) - if add_upsample: - self.resnet_up = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - up=True, - kernel="fir", - ) - self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) - self.skip_norm = torch.nn.GroupNorm( - num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True - ) - self.act = nn.SiLU() - else: - self.resnet_up = None - self.skip_conv = None - self.skip_norm = None - self.act = None - - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - skip_sample=None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - hidden_states = resnet(hidden_states, temb) - - hidden_states = self.attentions[0](hidden_states) - - if skip_sample is not None: - skip_sample = self.upsampler(skip_sample) - else: - skip_sample = 0 - - if self.resnet_up is not None: - skip_sample_states = self.skip_norm(hidden_states) - skip_sample_states = self.act(skip_sample_states) - skip_sample_states = self.skip_conv(skip_sample_states) - - skip_sample = skip_sample + skip_sample_states - - hidden_states = self.resnet_up(hidden_states, temb) - - return hidden_states, skip_sample - - -class SkipUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - output_scale_factor: float = np.sqrt(2.0), - add_upsample: bool = True, - upsample_padding: int = 1, - ): - super().__init__() - self.resnets = nn.ModuleList([]) - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - self.resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min((resnet_in_channels + res_skip_channels) // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) - if add_upsample: - self.resnet_up = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - up=True, - kernel="fir", - ) - self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) - self.skip_norm = torch.nn.GroupNorm( - num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True - ) - self.act = nn.SiLU() - else: - self.resnet_up = None - self.skip_conv = None - self.skip_norm = None - self.act = None - - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - skip_sample=None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - hidden_states = resnet(hidden_states, temb) - - if skip_sample is not None: - skip_sample = self.upsampler(skip_sample) - else: - skip_sample = 0 - - if self.resnet_up is not None: - skip_sample_states = self.skip_norm(hidden_states) - skip_sample_states = self.act(skip_sample_states) - skip_sample_states = self.skip_conv(skip_sample_states) - - skip_sample = skip_sample + skip_sample_states - - hidden_states = self.resnet_up(hidden_states, temb) - - return hidden_states, skip_sample - - -class ResnetUpsampleBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - skip_time_act: bool = False, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - up=True, - ) - ] - ) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, temb) - - return hidden_states - - -class SimpleCrossAttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - prev_output_channel: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - skip_time_act: bool = False, - only_cross_attention: bool = False, - cross_attention_norm: Optional[str] = None, - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - self.attention_head_dim = attention_head_dim - - self.num_heads = out_channels // self.attention_head_dim - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - processor = ( - AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() - ) - - attentions.append( - Attention( - query_dim=out_channels, - cross_attention_dim=out_channels, - heads=self.num_heads, - dim_head=self.attention_head_dim, - added_kv_proj_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - bias=True, - upcast_softmax=True, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - processor=processor, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - up=True, - ) - ] - ) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - if attention_mask is None: - # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. - mask = None if encoder_hidden_states is None else encoder_attention_mask - else: - # when attention_mask is defined: we don't even check for encoder_attention_mask. - # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. - # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. - # then we can simplify this whole if/else block to: - # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask - mask = attention_mask - - for resnet, attn in zip(self.resnets, self.attentions): - # resnet - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - else: - hidden_states = resnet(hidden_states, temb) - - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, temb) - - return hidden_states - - -class KUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - resolution_idx: int, - dropout: float = 0.0, - num_layers: int = 5, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - resnet_group_size: Optional[int] = 32, - add_upsample: bool = True, - ): - super().__init__() - resnets = [] - k_in_channels = 2 * out_channels - k_out_channels = in_channels - num_layers = num_layers - 1 - - for i in range(num_layers): - in_channels = k_in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=k_out_channels if (i == num_layers - 1) else out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=groups, - groups_out=groups_out, - dropout=dropout, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([KUpsample2D()]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - res_hidden_states_tuple = res_hidden_states_tuple[-1] - if res_hidden_states_tuple is not None: - hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class KCrossAttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - resolution_idx: int, - dropout: float = 0.0, - num_layers: int = 4, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - resnet_group_size: int = 32, - attention_head_dim: int = 1, # attention dim_head - cross_attention_dim: int = 768, - add_upsample: bool = True, - upcast_attention: bool = False, - ): - super().__init__() - resnets = [] - attentions = [] - - is_first_block = in_channels == out_channels == temb_channels - is_middle_block = in_channels != out_channels - add_self_attention = True if is_first_block else False - - self.has_cross_attention = True - self.attention_head_dim = attention_head_dim - - # in_channels, and out_channels for the block (k-unet) - k_in_channels = out_channels if is_first_block else 2 * out_channels - k_out_channels = in_channels - - num_layers = num_layers - 1 - - for i in range(num_layers): - in_channels = k_in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - if is_middle_block and (i == num_layers - 1): - conv_2d_out_channels = k_out_channels - else: - conv_2d_out_channels = None - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - conv_2d_out_channels=conv_2d_out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=groups, - groups_out=groups_out, - dropout=dropout, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - attentions.append( - KAttentionBlock( - k_out_channels if (i == num_layers - 1) else out_channels, - k_out_channels // attention_head_dim - if (i == num_layers - 1) - else out_channels // attention_head_dim, - attention_head_dim, - cross_attention_dim=cross_attention_dim, - temb_channels=temb_channels, - attention_bias=True, - add_self_attention=add_self_attention, - cross_attention_norm="layer_norm", - upcast_attention=upcast_attention, - ) - ) - - self.resnets = nn.ModuleList(resnets) - self.attentions = nn.ModuleList(attentions) - - if add_upsample: - self.upsamplers = nn.ModuleList([KUpsample2D()]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - upsample_size: Optional[int] = None, - attention_mask: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - res_hidden_states_tuple = res_hidden_states_tuple[-1] - if res_hidden_states_tuple is not None: - hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) - - for resnet, attn in zip(self.resnets, self.attentions): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - else: - hidden_states = resnet(hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -# can potentially later be renamed to `No-feed-forward` attention -class KAttentionBlock(nn.Module): - r""" - A basic Transformer block. - - Parameters: - dim (`int`): The number of channels in the input and output. - num_attention_heads (`int`): The number of heads to use for multi-head attention. - attention_head_dim (`int`): The number of channels in each head. - dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. - cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. - attention_bias (`bool`, *optional*, defaults to `False`): - Configure if the attention layers should contain a bias parameter. - upcast_attention (`bool`, *optional*, defaults to `False`): - Set to `True` to upcast the attention computation to `float32`. - temb_channels (`int`, *optional*, defaults to 768): - The number of channels in the token embedding. - add_self_attention (`bool`, *optional*, defaults to `False`): - Set to `True` to add self-attention to the block. - cross_attention_norm (`str`, *optional*, defaults to `None`): - The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. - group_size (`int`, *optional*, defaults to 32): - The number of groups to separate the channels into for group normalization. - """ - - def __init__( - self, - dim: int, - num_attention_heads: int, - attention_head_dim: int, - dropout: float = 0.0, - cross_attention_dim: Optional[int] = None, - attention_bias: bool = False, - upcast_attention: bool = False, - temb_channels: int = 768, # for ada_group_norm - add_self_attention: bool = False, - cross_attention_norm: Optional[str] = None, - group_size: int = 32, - ): - super().__init__() - self.add_self_attention = add_self_attention - - # 1. Self-Attn - if add_self_attention: - self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) - self.attn1 = Attention( - query_dim=dim, - heads=num_attention_heads, - dim_head=attention_head_dim, - dropout=dropout, - bias=attention_bias, - cross_attention_dim=None, - cross_attention_norm=None, - ) - - # 2. Cross-Attn - self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) - self.attn2 = Attention( - query_dim=dim, - cross_attention_dim=cross_attention_dim, - heads=num_attention_heads, - dim_head=attention_head_dim, - dropout=dropout, - bias=attention_bias, - upcast_attention=upcast_attention, - cross_attention_norm=cross_attention_norm, - ) - - def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: - return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) - - def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: - return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) - - def forward( - self, - hidden_states: torch.FloatTensor, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - # TODO: mark emb as non-optional (self.norm2 requires it). - # requires assessing impact of change to positional param interface. - emb: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - # 1. Self-Attention - if self.add_self_attention: - norm_hidden_states = self.norm1(hidden_states, emb) - - height, weight = norm_hidden_states.shape[2:] - norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) - - attn_output = self.attn1( - norm_hidden_states, - encoder_hidden_states=None, - attention_mask=attention_mask, - **cross_attention_kwargs, - ) - attn_output = self._to_4d(attn_output, height, weight) - - hidden_states = attn_output + hidden_states - - # 2. Cross-Attention/None - norm_hidden_states = self.norm2(hidden_states, emb) - - height, weight = norm_hidden_states.shape[2:] - norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) - attn_output = self.attn2( - norm_hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, - **cross_attention_kwargs, - ) - attn_output = self._to_4d(attn_output, height, weight) - - hidden_states = attn_output + hidden_states - - return hidden_states