Spaces:
AguaL
/
Running on Zero

AguaL commited on
Commit
d568c8b
·
1 Parent(s): b3d9c17

重新优化界面

Browse files
Files changed (1) hide show
  1. app.py +126 -142
app.py CHANGED
@@ -24,7 +24,7 @@ from preprocess.humanparsing.run_parsing import Parsing
24
  from preprocess.openpose.run_openpose import OpenPose
25
  from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
-
28
 
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
  np_image = np.array(pil_image)
@@ -121,61 +121,53 @@ pipe = TryonPipeline.from_pretrained(
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
 
 
124
  @spaces.GPU
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
 
126
  device = "cuda"
127
-
128
  openpose_model.preprocessor.body_estimation.model.to(device)
129
  pipe.to(device)
130
  pipe.unet_encoder.to(device)
131
 
132
- garm_img= garm_img.convert("RGB").resize((768,1024))
133
- human_img_orig = dict["background"].convert("RGB")
 
 
134
 
135
- if is_checked_crop:
136
- width, height = human_img_orig.size
137
- target_width = int(min(width, height * (3 / 4)))
138
- target_height = int(min(height, width * (4 / 3)))
139
- left = (width - target_width) / 2
140
- top = (height - target_height) / 2
141
- right = (width + target_width) / 2
142
- bottom = (height + target_height) / 2
143
- cropped_img = human_img_orig.crop((left, top, right, bottom))
144
- crop_size = cropped_img.size
145
- human_img = cropped_img.resize((768,1024))
146
- else:
147
- human_img = human_img_orig.resize((768,1024))
148
-
149
-
150
- if is_checked:
151
- keypoints = openpose_model(human_img.resize((384,512)))
152
- model_parse, _ = parsing_model(human_img.resize((384,512)))
153
- mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
- mask = mask.resize((768,1024))
155
- else:
156
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
- # mask = transforms.ToTensor()(mask)
158
- # mask = mask.unsqueeze(0)
159
  mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
  mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
 
 
162
 
163
  human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
-
166
-
167
 
168
  args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
  # verbosity = getattr(args, "verbosity", None)
170
  pose_img = args.func(args,human_img_arg)
171
  pose_img = pose_img[:,:,::-1]
172
  pose_img = Image.fromarray(pose_img).resize((768,1024))
 
 
 
 
 
 
 
173
 
174
  with torch.no_grad():
175
  # Extract the images
176
  with torch.cuda.amp.autocast():
177
  with torch.no_grad():
178
- prompt = "model is wearing " + garment_des
179
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
180
  with torch.inference_mode():
181
  (
@@ -189,125 +181,117 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
189
  do_classifier_free_guidance=True,
190
  negative_prompt=negative_prompt,
191
  )
192
-
193
- prompt = "a photo of " + garment_des
194
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
- if not isinstance(prompt, List):
196
  prompt = [prompt] * 1
197
- if not isinstance(negative_prompt, List):
198
- negative_prompt = [negative_prompt] * 1
199
- with torch.inference_mode():
200
- (
201
- prompt_embeds_c,
202
- _,
203
- _,
204
- _,
205
- ) = pipe.encode_prompt(
206
- prompt,
207
- num_images_per_prompt=1,
208
- do_classifier_free_guidance=False,
209
- negative_prompt=negative_prompt,
210
- )
211
-
212
-
213
-
214
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
- images = pipe(
218
- prompt_embeds=prompt_embeds.to(device,torch.float16),
219
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
- num_inference_steps=denoise_steps,
223
- generator=generator,
224
- strength = 1.0,
225
- pose_img = pose_img.to(device,torch.float16),
226
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
- cloth = garm_tensor.to(device,torch.float16),
228
- mask_image=mask,
229
- image=human_img,
230
- height=1024,
231
- width=768,
232
- ip_adapter_image = garm_img.resize((768,1024)),
233
- guidance_scale=2.0,
234
- )[0]
235
-
236
- if is_checked_crop:
237
- out_img = images[0].resize(crop_size)
238
- human_img_orig.paste(out_img, (int(left), int(top)))
239
- return human_img_orig, mask_gray
240
- else:
241
- return images[0], mask_gray
242
- # return images[0], mask_gray
243
-
244
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
-
247
- human_list = os.listdir(os.path.join(example_path,"human"))
248
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
-
250
- human_ex_list = []
251
- for ex_human in human_list_path:
252
- ex_dict= {}
253
- ex_dict['background'] = ex_human
254
- ex_dict['layers'] = None
255
- ex_dict['composite'] = None
256
- human_ex_list.append(ex_dict)
257
-
258
- ##default human
259
-
260
-
261
- image_blocks = gr.Blocks().queue()
262
- with image_blocks as demo:
263
- gr.Markdown("## IDM-VTON 👕👔👚")
264
- gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
265
  with gr.Row():
266
  with gr.Column():
267
- imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
268
- with gr.Row():
269
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
270
- with gr.Row():
271
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
 
 
 
272
 
273
- example = gr.Examples(
274
- inputs=imgs,
275
- examples_per_page=10,
276
- examples=human_ex_list
 
 
 
 
 
 
 
 
 
277
  )
278
 
 
 
 
 
 
279
  with gr.Column():
280
- garm_img = gr.Image(label="Garment", sources='upload', type="pil")
281
- with gr.Row(elem_id="prompt-container"):
282
- with gr.Row():
283
- prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
284
- example = gr.Examples(
285
- inputs=garm_img,
286
- examples_per_page=8,
287
- examples=garm_list_path)
288
- with gr.Column():
289
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
- with gr.Column():
292
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
-
295
-
296
 
 
 
 
 
 
297
 
298
- with gr.Column():
299
- try_button = gr.Button(value="Try-on")
300
- with gr.Accordion(label="Advanced Settings", open=False):
301
  with gr.Row():
 
 
 
302
  denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
303
  seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
-
305
-
306
-
307
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
308
-
309
-
310
-
311
-
312
- image_blocks.launch()
313
-
 
24
  from preprocess.openpose.run_openpose import OpenPose
25
  from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
+ from PIL import Image, ImageDraw, ImageFont
28
 
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
  np_image = np.array(pil_image)
 
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
+ progress=gr.Progress()
125
+
126
  @spaces.GPU
127
+ def infer(person,garment,denoise_steps,seed):
128
+ progress(0,desc="Starting")
129
  device = "cuda"
130
+
131
  openpose_model.preprocessor.body_estimation.model.to(device)
132
  pipe.to(device)
133
  pipe.unet_encoder.to(device)
134
 
135
+ human_img = person.convert("RGB").resize((768,1024))
136
+ garm_img= garment.convert("RGB").resize((768,1024))
137
+
138
+ progress(0.1,desc="Mask generating")
139
 
140
+ keypoints = openpose_model(human_img.resize((384,512)))
141
+ model_parse, _ = parsing_model(human_img.resize((384,512)))
142
+ mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
143
+ mask = mask.resize((768,1024))
144
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
  mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
146
  mask_gray = to_pil_image((mask_gray+1.0)/2.0)
147
 
148
+ progress(0.3,desc="DensePose processing")
149
 
150
  human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
151
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
 
 
152
 
153
  args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
154
  # verbosity = getattr(args, "verbosity", None)
155
  pose_img = args.func(args,human_img_arg)
156
  pose_img = pose_img[:,:,::-1]
157
  pose_img = Image.fromarray(pose_img).resize((768,1024))
158
+
159
+ progress(0.5,desc="Image generating")
160
+
161
+ def callback(pipe, step, timestep, callback_kwargs):
162
+ progress_value = 0.5 + ((step+1.0)/denoise_steps)*(0.5/1.0)
163
+ progress(progress_value, desc=f"Image generating, {step + 1}/{denoise_steps} steps")
164
+ return callback_kwargs
165
 
166
  with torch.no_grad():
167
  # Extract the images
168
  with torch.cuda.amp.autocast():
169
  with torch.no_grad():
170
+ prompt = "model is wearing clothing"
171
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
172
  with torch.inference_mode():
173
  (
 
181
  do_classifier_free_guidance=True,
182
  negative_prompt=negative_prompt,
183
  )
184
+
185
+ prompt = "a photo of clothing"
186
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
187
+ if not isinstance(prompt, List):
188
  prompt = [prompt] * 1
189
+ if not isinstance(negative_prompt, List):
190
+ negative_prompt = [negative_prompt] * 1
191
+ with torch.inference_mode():
192
+ (
193
+ prompt_embeds_c,
194
+ _,
195
+ _,
196
+ _,
197
+ ) = pipe.encode_prompt(
198
+ prompt,
199
+ num_images_per_prompt=1,
200
+ do_classifier_free_guidance=False,
201
+ negative_prompt=negative_prompt,
202
+ )
203
+
204
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
205
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
206
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
207
+ images = pipe(
208
+ prompt_embeds=prompt_embeds.to(device,torch.float16),
209
+ negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
210
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
211
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
212
+ num_inference_steps=denoise_steps,
213
+ generator=generator,
214
+ strength = 1.0,
215
+ pose_img = pose_img.to(device,torch.float16),
216
+ text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
217
+ cloth = garm_tensor.to(device,torch.float16),
218
+ mask_image=mask,
219
+ image=human_img,
220
+ height=1024,
221
+ width=768,
222
+ ip_adapter_image = garm_img.resize((768,1024)),
223
+ guidance_scale=2.0,
224
+ callback_on_step_end=callback
225
+ )[0]
226
+ progress(1,desc="Complete")
227
+ return images[0]
228
+
229
+
230
+ title = "## IDM-VTON"
231
+ description = "Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)"
232
+
233
+ example_path = os.path.join(os.path.dirname(__file__), 'example')
234
+ person_list = os.listdir(os.path.join(example_path,"human"))
235
+ person_images = [os.path.join(example_path,"human",person) for person in person_list]
236
+
237
+ garment_list = os.listdir(os.path.join(example_path,"cloth"))
238
+ garment_images = [os.path.join(example_path,"cloth",garment) for garment in garment_list]
239
+
240
+
241
+ with gr.Blocks().queue() as demo:
242
+ gr.Markdown(title)
243
+ gr.Markdown(description)
 
 
 
 
 
 
 
 
 
 
 
 
 
244
  with gr.Row():
245
  with gr.Column():
246
+ gr.Markdown("#### Person Image")
247
+ person_image = gr.Image(
248
+ sources=["upload"],
249
+ type="pil",
250
+ label="Person Image",
251
+ width=512,
252
+ height=512,
253
+ )
254
 
255
+ gr.Examples(
256
+ inputs=person_image,
257
+ examples_per_page=20,
258
+ examples=person_images,
259
+ )
260
+ with gr.Column():
261
+ gr.Markdown("#### Garment Image")
262
+ garment_image = gr.Image(
263
+ sources=["upload"],
264
+ type="pil",
265
+ label="Garment Image",
266
+ width=512,
267
+ height=512,
268
  )
269
 
270
+ gr.Examples(
271
+ inputs=garment_image,
272
+ examples_per_page=20,
273
+ examples=garment_images,
274
+ )
275
  with gr.Column():
276
+ gr.Markdown("#### Generated Image")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
 
278
+ gen_image = gr.Image(
279
+ label="Generated Image",
280
+ width=512,
281
+ height=512,
282
+ )
283
 
 
 
 
284
  with gr.Row():
285
+ gen_button = gr.Button("Generate")
286
+
287
+ with gr.Accordion("Advanced Options", open=False):
288
  denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
289
  seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
290
+
291
+ gen_button.click(
292
+ fn=infer,
293
+ inputs=[person_image, garment_image, denoise_steps, seed],
294
+ outputs=[gen_image]
295
+ )
296
+
297
+ demo.launch()