Arcypojeb commited on
Commit
906d243
·
verified ·
1 Parent(s): d18d460

Upload 9 files

Browse files
Files changed (9) hide show
  1. Docsbotport.html +44 -41
  2. ServChar.py +74 -0
  3. ServFire.py +124 -0
  4. ServG4F.py +106 -0
  5. clientCharacter.py +59 -0
  6. clientFireworks.py +98 -0
  7. clientG4F.py +88 -0
  8. comp.html +8 -6
  9. flowise.html +9 -7
Docsbotport.html CHANGED
@@ -1,40 +1,41 @@
1
  <!DOCTYPE html>
2
  <html>
3
- <head>
4
- <title>HuggingFace Chat Interface</title>
5
- <meta charset="UTF-8">
6
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
7
- <style>
8
- #chatbox {
9
- height: 300px;
10
- width: 1080px;
11
- border: 1px solid black;
12
- overflow: auto;
13
- padding: 10px;
14
- }
15
- #inputbox {
16
- height: 50px;
17
- width: 1080px;
18
- border: 1px solid black;
19
- padding: 10px;
20
- }
21
- .led {
22
- height: 10px;
23
- width: 10px;
24
- border-radius: 50%;
25
- display: inline-block;
26
- margin-right: 5px;
27
- }
28
- .led-on {
29
- background-color: green;
30
- }
31
- .led-off {
32
- background-color: red;
33
- }
34
- </style>
35
- </head>
36
- <body>
37
- <h1>DocsBot Agents Interface</h1>
 
38
  <div id="status">
39
  <span>Module Running:</span>
40
  <span class="led led-off" id="module-led"></span>
@@ -44,14 +45,16 @@
44
  <br>
45
  <div id="status-msg"></div>
46
  </div>
47
- <input type="text" id="port" placeholder="websocket port">
48
- <button id="connector">CONNECT TO SERVER</button>
 
 
49
  <input type="text" id="inputbox" placeholder="Type your message here...">
50
- <button id="sendbtn">Send</button>
 
 
51
  <div id="chatbox"></div>
52
- <br><br>
53
- <button id="clearbtn">New Chat (or Clear)</button>
54
- <button id="testbtn">Test Server</button>
55
  <p id="result"></p>
56
  <script>
57
  const mled = document.getElementById("module-led");
 
1
  <!DOCTYPE html>
2
  <html>
3
+ <head>
4
+ <title>HuggingFace Chat Interface</title>
5
+ <meta charset="UTF-8">
6
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
7
+ <style>
8
+ #chatbox {
9
+ height: 500px;
10
+ width: 1080px;
11
+ border: 1px solid black;
12
+ overflow: auto;
13
+ padding: 10px;
14
+ background-color: white;
15
+ }
16
+ #inputbox {
17
+ height: 50px;
18
+ width: 1080px;
19
+ border: 1px solid black;
20
+ padding: 10px;
21
+ }
22
+ .led {
23
+ height: 10px;
24
+ width: 10px;
25
+ border-radius: 50%;
26
+ display: inline-block;
27
+ margin-right: 5px;
28
+ }
29
+ .led-on {
30
+ background-color: green;
31
+ }
32
+ .led-off {
33
+ background-color: red;
34
+ }
35
+ </style>
36
+ </head>
37
+ <body>
38
+ <h1>Chaindesk Chat Interface</h1>
39
  <div id="status">
40
  <span>Module Running:</span>
41
  <span class="led led-off" id="module-led"></span>
 
45
  <br>
46
  <div id="status-msg"></div>
47
  </div>
48
+ <input type="text" id="port" placeholder="websocket port">
49
+ <input type="text" id="flowise" placeholder="paste your agent id here">
50
+ <button id="connector">CONNECT TO SERVER</button>
51
+ <br><br>
52
  <input type="text" id="inputbox" placeholder="Type your message here...">
53
+ <br><br>
54
+ <button id="sendbtn">Send</button><button id="clearbtn">New Chat (or Clear)</button><button id="testbtn">Test Server</button>
55
+ <br><br>
56
  <div id="chatbox"></div>
57
+ <br><br>
 
 
58
  <p id="result"></p>
59
  <script>
60
  const mled = document.getElementById("module-led");
ServChar.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import sqlite3
4
+ import datetime
5
+ import streamlit as st
6
+ from PyCharacterAI import Client
7
+
8
+ class WebSocketServer2:
9
+ def __init__(self, host, port):
10
+ self.host = host
11
+ self.port = port
12
+ self.server = None
13
+
14
+ async def handler(self, websocket):
15
+ client = Client()
16
+ if "tokenChar" not in st.session_state:
17
+ st.session_state.tokenChar = ""
18
+ if "character_ID" not in st.session_state:
19
+ st.session_state.character_ID = ""
20
+
21
+ await client.authenticate_with_token(st.session_state.tokenChar)
22
+ char_id = st.session_state.character_ID
23
+ chat = await client.create_or_continue_chat(char_id)
24
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
25
+ print('New connection')
26
+ await websocket.send(instruction)
27
+ while True:
28
+ # Receive a message from the client
29
+ message = await websocket.recv()
30
+ # Print the message
31
+ print(f"Server received: {message}")
32
+ input_Msg = st.chat_message("assistant")
33
+ input_Msg.markdown(message)
34
+ timestamp = datetime.datetime.now().isoformat()
35
+ sender = 'client'
36
+ db = sqlite3.connect('chat-hub.db')
37
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
38
+ (sender, message, timestamp))
39
+ db.commit()
40
+ try:
41
+ answer = await chat.send_message(message)
42
+ response = f"{answer.src_character_name}: {answer.text}"
43
+ print(response)
44
+ output_Msg = st.chat_message("ai")
45
+ output_Msg.markdown(response)
46
+ timestamp = datetime.datetime.now().isoformat()
47
+ serverSender = 'server'
48
+ db = sqlite3.connect('chat-hub.db')
49
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
50
+ (serverSender, response, timestamp))
51
+ db.commit()
52
+ await websocket.send(response)
53
+ continue
54
+
55
+ except Exception as e:
56
+ print(f"Error: {e}")
57
+
58
+ async def start_server(self):
59
+ self.server = await websockets.serve(
60
+ self.handler,
61
+ self.host,
62
+ self.port
63
+ )
64
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
65
+
66
+ def run_forever(self):
67
+ asyncio.get_event_loop().run_until_complete(self.start_server())
68
+ asyncio.get_event_loop().run_forever()
69
+
70
+ async def stop_server(self):
71
+ if self.server:
72
+ self.server.close()
73
+ await self.server.wait_closed()
74
+ print("WebSocket server stopped.")
ServFire.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import datetime
6
+ import g4f
7
+ import streamlit as st
8
+ import fireworks.client
9
+
10
+ class WebSocketServer:
11
+ def __init__(self, host, port):
12
+ self.host = host
13
+ self.port = port
14
+ self.server = None
15
+
16
+ async def chatCompletion(self, question):
17
+
18
+ if "api_key" not in st.session_state:
19
+ st.session_state.api_key = ""
20
+
21
+ fireworks.client.api_key = st.session_state.api_key
22
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
23
+
24
+ try:
25
+ # Connect to the database and get the last 30 messages
26
+ db = sqlite3.connect('chat-hub.db')
27
+ cursor = db.cursor()
28
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 10")
29
+ messages = cursor.fetchall()
30
+ messages.reverse()
31
+
32
+ # Extract user inputs and generated responses from the messages
33
+ past_user_inputs = []
34
+ generated_responses = []
35
+
36
+ for message in messages:
37
+ if message[1] == 'client':
38
+ past_user_inputs.append(message[2])
39
+ else:
40
+ generated_responses.append(message[2])
41
+
42
+ # Prepare data to send to the chatgpt-api.shn.hk
43
+ response = fireworks.client.ChatCompletion.create(
44
+ model="accounts/fireworks/models/llama-v2-7b-chat",
45
+ messages=[
46
+ {"role": "system", "content": system_instruction},
47
+ *[{"role": "user", "content": message} for message in past_user_inputs],
48
+ *[{"role": "assistant", "content": message} for message in generated_responses],
49
+ {"role": "user", "content": question}
50
+ ],
51
+ stream=False,
52
+ n=1,
53
+ max_tokens=2500,
54
+ temperature=0.5,
55
+ top_p=0.7,
56
+ )
57
+
58
+ answer = response.choices[0].message.content
59
+ print(answer)
60
+ return str(answer)
61
+
62
+ except Exception as error:
63
+ print("Error while fetching or processing the response:", error)
64
+ return "Error: Unable to generate a response."
65
+
66
+ # Define the handler function that will process incoming messages
67
+ async def handler(self, websocket):
68
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
69
+ print('New connection')
70
+ await websocket.send(instruction)
71
+ db = sqlite3.connect('chat-hub.db')
72
+ # Loop forever
73
+ while True:
74
+ # Receive a message from the client
75
+ message = await websocket.recv()
76
+ # Print the message
77
+ print(f"Server received: {message}")
78
+ input_Msg = st.chat_message("assistant")
79
+ input_Msg.markdown(message)
80
+ timestamp = datetime.datetime.now().isoformat()
81
+ sender = 'client'
82
+ db = sqlite3.connect('chat-hub.db')
83
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
84
+ (sender, message, timestamp))
85
+ db.commit()
86
+ try:
87
+ response = await self.chatCompletion(message)
88
+ serverResponse = f"server: {response}"
89
+ print(serverResponse)
90
+ output_Msg = st.chat_message("ai")
91
+ output_Msg.markdown(serverResponse)
92
+ timestamp = datetime.datetime.now().isoformat()
93
+ serverSender = 'server'
94
+ db = sqlite3.connect('chat-hub.db')
95
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
96
+ (serverSender, serverResponse, timestamp))
97
+ db.commit()
98
+ # Append the server response to the server_responses list
99
+ await websocket.send(serverResponse)
100
+ continue
101
+
102
+ except websockets.exceptions.ConnectionClosedError as e:
103
+ print(f"Connection closed: {e}")
104
+
105
+ except Exception as e:
106
+ print(f"Error: {e}")
107
+
108
+ async def start_server(self):
109
+ self.server = await websockets.serve(
110
+ self.handler,
111
+ self.host,
112
+ self.port
113
+ )
114
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
115
+
116
+ def run_forever(self):
117
+ asyncio.get_event_loop().run_until_complete(self.start_server())
118
+ asyncio.get_event_loop().run_forever()
119
+
120
+ async def stop_server(self):
121
+ if self.server:
122
+ self.server.close()
123
+ await self.server.wait_closed()
124
+ print("WebSocket server stopped.")
ServG4F.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import datetime
6
+ import g4f
7
+ import streamlit as st
8
+
9
+ class WebSocketServer1:
10
+ def __init__(self, host, port):
11
+ self.host = host
12
+ self.port = port
13
+ self.server = None
14
+
15
+ async def askQuestion(self, question):
16
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
17
+ try:
18
+ db = sqlite3.connect('chat-hub.db')
19
+ cursor = db.cursor()
20
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 30")
21
+ messages = cursor.fetchall()
22
+ messages.reverse()
23
+
24
+ past_user_inputs = []
25
+ generated_responses = []
26
+
27
+ for message in messages:
28
+ if message[1] == 'client':
29
+ past_user_inputs.append(message[2])
30
+ else:
31
+ generated_responses.append(message[2])
32
+
33
+ response = await g4f.ChatCompletion.create_async(
34
+ model=g4f.models.gpt_4,
35
+ provider=g4f.Provider.Bing,
36
+ messages=[
37
+ {"role": "system", "content": system_instruction},
38
+ *[{"role": "user", "content": message} for message in past_user_inputs],
39
+ *[{"role": "assistant", "content": message} for message in generated_responses],
40
+ {"role": "user", "content": question}
41
+ ])
42
+
43
+ print(response)
44
+ return response
45
+
46
+ except Exception as e:
47
+ print(e)
48
+
49
+
50
+ async def handler(self, websocket):
51
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
52
+ print('New connection')
53
+ await websocket.send(instruction)
54
+ db = sqlite3.connect('chat-hub.db')
55
+ # Loop forever
56
+ while True:
57
+ # Receive a message from the client
58
+ message = await websocket.recv()
59
+ # Print the message
60
+ print(f"Server received: {message}")
61
+ input_Msg = st.chat_message("assistant")
62
+ input_Msg.markdown(message)
63
+ timestamp = datetime.datetime.now().isoformat()
64
+ sender = 'client'
65
+ db = sqlite3.connect('chat-hub.db')
66
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
67
+ (sender, message, timestamp))
68
+ db.commit()
69
+ try:
70
+ response = await self.askQuestion(message)
71
+ serverResponse = f"server: {response}"
72
+ print(serverResponse)
73
+ output_Msg = st.chat_message("ai")
74
+ output_Msg.markdown(serverResponse)
75
+ timestamp = datetime.datetime.now().isoformat()
76
+ serverSender = 'server'
77
+ db = sqlite3.connect('chat-hub.db')
78
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
79
+ (serverSender, serverResponse, timestamp))
80
+ db.commit()
81
+ # Append the server response to the server_responses list
82
+ await websocket.send(serverResponse)
83
+
84
+ except websockets.exceptions.ConnectionClosedError as e:
85
+ print(f"Connection closed: {e}")
86
+
87
+ except Exception as e:
88
+ print(f"Error: {e}")
89
+
90
+ async def start_server(self):
91
+ self.server = await websockets.serve(
92
+ self.handler,
93
+ self.host,
94
+ self.port
95
+ )
96
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
97
+
98
+ def run_forever(self):
99
+ asyncio.get_event_loop().run_until_complete(self.start_server())
100
+ asyncio.get_event_loop().run_forever()
101
+
102
+ async def stop_server(self):
103
+ if self.server:
104
+ self.server.close()
105
+ await self.server.wait_closed()
106
+ print("WebSocket server stopped.")
clientCharacter.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import streamlit as st
6
+ from PyCharacterAI import Client
7
+
8
+ # Define the websocket client class
9
+ class WebSocketClient2:
10
+ def __init__(self, uri):
11
+ # Initialize the uri attribute
12
+ self.uri = uri
13
+
14
+ # Define a function that will run the client in a separate thread
15
+ def run(self):
16
+ # Create a thread object
17
+ self.thread = threading.Thread(target=self.run_client)
18
+ # Start the thread
19
+ self.thread.start()
20
+
21
+ # Define a function that will run the client using asyncio
22
+ def run_client(self):
23
+ # Get the asyncio event loop
24
+ loop = asyncio.new_event_loop()
25
+ # Set the event loop as the current one
26
+ asyncio.set_event_loop(loop)
27
+ # Run the client until it is stopped
28
+ loop.run_until_complete(self.client())
29
+
30
+ # Define a coroutine that will connect to the server and exchange messages
31
+ async def startClient(self):
32
+ client = Client()
33
+ await client.authenticate_with_token(st.session_state.tokenChar)
34
+ chat = await client.create_or_continue_chat(st.session_state.character_ID)
35
+ # Connect to the server
36
+ async with websockets.connect(self.uri) as websocket:
37
+ # Loop forever
38
+ while True:
39
+ # Listen for messages from the server
40
+ input_message = await websocket.recv()
41
+ print(f"Server: {input_message}")
42
+ input_Msg = st.chat_message("assistant")
43
+ input_Msg.markdown(input_message)
44
+ try:
45
+ answer = await chat.send_message(input_message)
46
+ response = f"{answer.src_character_name}: {answer.text}"
47
+ print(response)
48
+ outputMsg1 = st.chat_message("ai")
49
+ outputMsg1.markdown(response)
50
+ await websocket.send(response)
51
+ continue
52
+
53
+ except websockets.ConnectionClosed:
54
+ print("client disconnected")
55
+ continue
56
+
57
+ except Exception as e:
58
+ print(f"Error: {e}")
59
+ continue
clientFireworks.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import fireworks.client
6
+ import streamlit as st
7
+
8
+ # Define the websocket client class
9
+ class WebSocketClient:
10
+ def __init__(self, uri):
11
+ # Initialize the uri attribute
12
+ self.uri = uri
13
+
14
+ async def chatCompletion(self, question):
15
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
16
+ try:
17
+ # Connect to the database and get the last 30 messages
18
+ db = sqlite3.connect('chat-hub.db')
19
+ cursor = db.cursor()
20
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 10")
21
+ messages = cursor.fetchall()
22
+ messages.reverse()
23
+
24
+ # Extract user inputs and generated responses from the messages
25
+ past_user_inputs = []
26
+ generated_responses = []
27
+
28
+ for message in messages:
29
+ if message[1] == 'server':
30
+ past_user_inputs.append(message[2])
31
+ else:
32
+ generated_responses.append(message[2])
33
+
34
+ # Prepare data to send to the chatgpt-api.shn.hk
35
+ response = fireworks.client.ChatCompletion.create(
36
+ model="accounts/fireworks/models/llama-v2-7b-chat",
37
+ messages=[
38
+ {"role": "system", "content": system_instruction},
39
+ *[{"role": "user", "content": message} for message in past_user_inputs],
40
+ *[{"role": "assistant", "content": message} for message in generated_responses],
41
+ {"role": "user", "content": question}
42
+ ],
43
+ stream=False,
44
+ n=1,
45
+ max_tokens=2500,
46
+ temperature=0.5,
47
+ top_p=0.7,
48
+ )
49
+
50
+ answer = response.choices[0].message.content
51
+ print(answer)
52
+ return str(answer)
53
+
54
+ except Exception as error:
55
+ print("Error while fetching or processing the response:", error)
56
+ return "Error: Unable to generate a response."
57
+
58
+ # Define a function that will run the client in a separate thread
59
+ def run(self):
60
+ # Create a thread object
61
+ self.thread = threading.Thread(target=self.run_client)
62
+ # Start the thread
63
+ self.thread.start()
64
+
65
+ # Define a function that will run the client using asyncio
66
+ def run_client(self):
67
+ # Get the asyncio event loop
68
+ loop = asyncio.new_event_loop()
69
+ # Set the event loop as the current one
70
+ asyncio.set_event_loop(loop)
71
+ # Run the client until it is stopped
72
+ loop.run_until_complete(self.client())
73
+
74
+ # Define a coroutine that will connect to the server and exchange messages
75
+ async def startClient(self):
76
+ # Connect to the server
77
+ async with websockets.connect(self.uri) as websocket:
78
+ # Loop forever
79
+ while True:
80
+ # Listen for messages from the server
81
+ input_message = await websocket.recv()
82
+ print(f"Server: {input_message}")
83
+ input_Msg = st.chat_message("assistant")
84
+ input_Msg.markdown(input_message)
85
+ try:
86
+ response = await self.chatCompletion(input_message)
87
+ res1 = f"Client: {response}"
88
+ output_Msg = st.chat_message("ai")
89
+ output_Msg.markdown(res1)
90
+ await websocket.send(res1)
91
+
92
+ except websockets.ConnectionClosed:
93
+ print("client disconnected")
94
+ continue
95
+
96
+ except Exception as e:
97
+ print(f"Error: {e}")
98
+ continue
clientG4F.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import g4f
6
+ import streamlit as st
7
+
8
+ # Define the websocket client class
9
+ class WebSocketClient1:
10
+ def __init__(self, uri):
11
+ # Initialize the uri attribute
12
+ self.uri = uri
13
+
14
+ async def askQuestion(self, question):
15
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
16
+ try:
17
+ db = sqlite3.connect('chat-hub.db')
18
+ cursor = db.cursor()
19
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 30")
20
+ messages = cursor.fetchall()
21
+ messages.reverse()
22
+
23
+ past_user_inputs = []
24
+ generated_responses = []
25
+
26
+ for message in messages:
27
+ if message[1] == 'server':
28
+ past_user_inputs.append(message[2])
29
+ else:
30
+ generated_responses.append(message[2])
31
+
32
+ response = await g4f.ChatCompletion.create_async(
33
+ model=g4f.models.gpt_4,
34
+ provider=g4f.Provider.Bing,
35
+ messages=[
36
+ {"role": "system", "content": system_instruction},
37
+ *[{"role": "user", "content": message} for message in past_user_inputs],
38
+ *[{"role": "assistant", "content": message} for message in generated_responses],
39
+ {"role": "user", "content": question}
40
+ ])
41
+
42
+ print(response)
43
+ return response
44
+
45
+ except Exception as e:
46
+ print(e)
47
+
48
+ # Define a function that will run the client in a separate thread
49
+ def run(self):
50
+ # Create a thread object
51
+ self.thread = threading.Thread(target=self.run_client)
52
+ # Start the thread
53
+ self.thread.start()
54
+
55
+ # Define a function that will run the client using asyncio
56
+ def run_client(self):
57
+ # Get the asyncio event loop
58
+ loop = asyncio.new_event_loop()
59
+ # Set the event loop as the current one
60
+ asyncio.set_event_loop(loop)
61
+ # Run the client until it is stopped
62
+ loop.run_until_complete(self.client())
63
+
64
+ # Define a coroutine that will connect to the server and exchange messages
65
+ async def startClient(self):
66
+ # Connect to the server
67
+ async with websockets.connect(self.uri) as websocket:
68
+ # Loop forever
69
+ while True:
70
+ # Listen for messages from the server
71
+ input_message = await websocket.recv()
72
+ print(f"Server: {input_message}")
73
+ input_Msg = st.chat_message("assistant")
74
+ input_Msg.markdown(input_message)
75
+ try:
76
+ response = await self.askQuestion(input_message)
77
+ res1 = f"Client: {response}"
78
+ output_Msg = st.chat_message("ai")
79
+ output_Msg.markdown(res1)
80
+ await websocket.send(res1)
81
+
82
+ except websockets.ConnectionClosed:
83
+ print("client disconnected")
84
+ continue
85
+
86
+ except Exception as e:
87
+ print(f"Error: {e}")
88
+ continue
comp.html CHANGED
@@ -6,11 +6,12 @@
6
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
7
  <style>
8
  #chatbox {
9
- height: 300px;
10
  width: 1080px;
11
  border: 1px solid black;
12
  overflow: auto;
13
  padding: 10px;
 
14
  }
15
  #inputbox {
16
  height: 20px;
@@ -46,13 +47,14 @@
46
  </div>
47
  <input type="text" id="port" placeholder="websocket port">
48
  <input type="text" id="flowise" placeholder="paste your agent id here">
49
- <button id="connector">CONNECT TO SERVER</button>
 
50
  <input type="text" id="inputbox" placeholder="Type your message here...">
51
- <button id="sendbtn">Send</button>
 
 
52
  <div id="chatbox"></div>
53
- <br><br>
54
- <button id="clearbtn">New Chat (or Clear)</button>
55
- <button id="testbtn">Test Server</button>
56
  <p id="result"></p>
57
  <script>
58
  const mled = document.getElementById("module-led");
 
6
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
7
  <style>
8
  #chatbox {
9
+ height: 500px;
10
  width: 1080px;
11
  border: 1px solid black;
12
  overflow: auto;
13
  padding: 10px;
14
+ background-color: white;
15
  }
16
  #inputbox {
17
  height: 20px;
 
47
  </div>
48
  <input type="text" id="port" placeholder="websocket port">
49
  <input type="text" id="flowise" placeholder="paste your agent id here">
50
+ <button id="connector">CONNECT TO SERVER</button>
51
+ <br><br>
52
  <input type="text" id="inputbox" placeholder="Type your message here...">
53
+ <br><br>
54
+ <button id="sendbtn">Send</button><button id="clearbtn">New Chat (or Clear)</button><button id="testbtn">Test Server</button>
55
+ <br><br>
56
  <div id="chatbox"></div>
57
+ <br><br>
 
 
58
  <p id="result"></p>
59
  <script>
60
  const mled = document.getElementById("module-led");
flowise.html CHANGED
@@ -6,11 +6,12 @@
6
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
7
  <style>
8
  #chatbox {
9
- height: 300px;
10
  width: 1080px;
11
  border: 1px solid black;
12
  overflow: auto;
13
  padding: 10px;
 
14
  }
15
  #inputbox {
16
  height: 20px;
@@ -46,13 +47,14 @@
46
  </div>
47
  <input type="text" id="port" placeholder="websocket port">
48
  <input type="text" id="flowise" placeholder="paste your agent id here">
49
- <button id="connector">CONNECT TO SERVER</button>
 
50
  <input type="text" id="inputbox" placeholder="Type your message here...">
51
- <button id="sendbtn">Send</button>
 
 
52
  <div id="chatbox"></div>
53
- <br><br>
54
- <button id="clearbtn">New Chat (or Clear)</button>
55
- <button id="testbtn">Test Server</button>
56
  <p id="result"></p>
57
  <script>
58
  const mled = document.getElementById("module-led");
@@ -87,7 +89,7 @@
87
  async function askQuestion(question) {
88
  try {
89
  const flow = flowise.value
90
- const url = `https://flowiseai-flowise.hf.space/api/v1/prediction/${flow}`;
91
  const response = await fetch(url, {
92
  method: 'POST',
93
  headers: {'Content-Type': 'application/json',},
 
6
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
7
  <style>
8
  #chatbox {
9
+ height: 500px;
10
  width: 1080px;
11
  border: 1px solid black;
12
  overflow: auto;
13
  padding: 10px;
14
+ background-color: white;
15
  }
16
  #inputbox {
17
  height: 20px;
 
47
  </div>
48
  <input type="text" id="port" placeholder="websocket port">
49
  <input type="text" id="flowise" placeholder="paste your agent id here">
50
+ <button id="connector">CONNECT TO SERVER</button>
51
+ <br><br>
52
  <input type="text" id="inputbox" placeholder="Type your message here...">
53
+ <br><br>
54
+ <button id="sendbtn">Send</button><button id="clearbtn">New Chat (or Clear)</button><button id="testbtn">Test Server</button>
55
+ <br><br>
56
  <div id="chatbox"></div>
57
+ <br><br>
 
 
58
  <p id="result"></p>
59
  <script>
60
  const mled = document.getElementById("module-led");
 
89
  async function askQuestion(question) {
90
  try {
91
  const flow = flowise.value
92
+ const url = `https://raufxd-flowise.hf.space/api/v1/prediction/${flow}`;
93
  const response = await fetch(url, {
94
  method: 'POST',
95
  headers: {'Content-Type': 'application/json',},