Spaces:
Build error
Build error
danseith
commited on
Commit
·
ca69fee
1
Parent(s):
e3a2d6f
Added dummy temp slider and output text box with new input.
Browse files
app.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from transformers import pipeline
|
5 |
from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline
|
6 |
-
from transformers import
|
7 |
|
8 |
-
unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
|
9 |
# unmasker = pipeline("temp-scale", model="anferico/bert-for-patents")
|
10 |
-
example = 'A crustless [MASK] made from two slices of baked bread'
|
11 |
-
|
12 |
-
|
13 |
|
14 |
def add_mask(text, size=1):
|
15 |
split_text = text.split()
|
@@ -20,7 +19,49 @@ def add_mask(text, size=1):
|
|
20 |
|
21 |
|
22 |
class TempScalePipe(FillMaskPipeline):
|
23 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Cap top_k if there are targets
|
25 |
if target_ids is not None and target_ids.shape[0] < top_k:
|
26 |
top_k = target_ids.shape[0]
|
@@ -30,14 +71,16 @@ class TempScalePipe(FillMaskPipeline):
|
|
30 |
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
|
31 |
# Fill mask pipeline supports only one ${mask_token} per sample
|
32 |
|
33 |
-
logits = outputs[0, masked_index, :] /
|
34 |
probs = logits.softmax(dim=-1)
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
if target_ids is not None:
|
38 |
probs = probs[..., target_ids]
|
39 |
-
|
40 |
-
|
41 |
|
42 |
result = []
|
43 |
single_mask = values.shape[0] == 1
|
@@ -69,41 +112,33 @@ PIPELINE_REGISTRY.register_pipeline(
|
|
69 |
pipeline_class=TempScalePipe,
|
70 |
pt_model=AutoModelForMaskedLM,
|
71 |
)
|
|
|
72 |
|
73 |
-
|
74 |
-
def unmask(text):
|
75 |
# text = add_mask(text)
|
76 |
-
|
|
|
|
|
77 |
out = {item["token_str"]: item["score"] for item in res}
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
textbox = gr.Textbox(label="Type language here", lines=5)
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
|
88 |
-
#
|
89 |
-
#
|
90 |
-
|
91 |
-
#
|
92 |
-
#
|
93 |
-
# def unmask(text):
|
94 |
-
# text = add_mask(text)
|
95 |
-
# res = unmasker(text)
|
96 |
-
# out = {item["token_str"]: item["score"] for item in res}
|
97 |
-
# return out
|
98 |
-
#
|
99 |
-
#
|
100 |
-
# textbox = gr.Textbox(label="Type language here", lines=5)
|
101 |
-
#
|
102 |
demo = gr.Interface(
|
103 |
fn=unmask,
|
104 |
-
inputs=textbox,
|
105 |
-
outputs="label",
|
106 |
-
examples=[example],
|
107 |
)
|
108 |
|
109 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from transformers import pipeline
|
5 |
from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline
|
6 |
+
from transformers import AutoModelForMaskedLM
|
7 |
|
|
|
8 |
# unmasker = pipeline("temp-scale", model="anferico/bert-for-patents")
|
9 |
+
example = 'A crustless [MASK] made from two slices of baked bread.'
|
10 |
+
example = 'The invention provides a method for altering or modifying [MASK] of one or more gene products.'
|
11 |
+
example = 'The graphite [MASK] is composed of a two-dimensional hexagonal lattice of carbon atoms.'
|
12 |
|
13 |
def add_mask(text, size=1):
|
14 |
split_text = text.split()
|
|
|
19 |
|
20 |
|
21 |
class TempScalePipe(FillMaskPipeline):
|
22 |
+
def _sanitize_parameters(self, top_k=None, targets=None, temp=None):
|
23 |
+
postprocess_params = {}
|
24 |
+
|
25 |
+
if targets is not None:
|
26 |
+
target_ids = self.get_target_ids(targets, top_k)
|
27 |
+
postprocess_params["target_ids"] = target_ids
|
28 |
+
|
29 |
+
if top_k is not None:
|
30 |
+
postprocess_params["top_k"] = top_k
|
31 |
+
|
32 |
+
if temp is not None:
|
33 |
+
postprocess_params["temp"] = temp
|
34 |
+
return {}, {}, postprocess_params
|
35 |
+
|
36 |
+
|
37 |
+
def __call__(self, inputs, *args, **kwargs):
|
38 |
+
"""
|
39 |
+
Fill the masked token in the text(s) given as inputs.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
args (`str` or `List[str]`):
|
43 |
+
One or several texts (or one list of prompts) with masked tokens.
|
44 |
+
targets (`str` or `List[str]`, *optional*):
|
45 |
+
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
|
46 |
+
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first
|
47 |
+
resulting token will be used (with a warning, and that might be slower).
|
48 |
+
top_k (`int`, *optional*):
|
49 |
+
When passed, overrides the number of predictions to return.
|
50 |
+
|
51 |
+
Return:
|
52 |
+
A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys:
|
53 |
+
|
54 |
+
- **sequence** (`str`) -- The corresponding input with the mask token prediction.
|
55 |
+
- **score** (`float`) -- The corresponding probability.
|
56 |
+
- **token** (`int`) -- The predicted token id (to replace the masked one).
|
57 |
+
- **token** (`str`) -- The predicted token (to replace the masked one).
|
58 |
+
"""
|
59 |
+
outputs = super().__call__(inputs, **kwargs)
|
60 |
+
if isinstance(inputs, list) and len(inputs) == 1:
|
61 |
+
return outputs[0]
|
62 |
+
return outputs
|
63 |
+
|
64 |
+
def postprocess(self, model_outputs, top_k=10, target_ids=None, temp=1):
|
65 |
# Cap top_k if there are targets
|
66 |
if target_ids is not None and target_ids.shape[0] < top_k:
|
67 |
top_k = target_ids.shape[0]
|
|
|
71 |
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
|
72 |
# Fill mask pipeline supports only one ${mask_token} per sample
|
73 |
|
74 |
+
logits = outputs[0, masked_index, :] / 1.2
|
75 |
probs = logits.softmax(dim=-1)
|
76 |
+
sampling = False
|
77 |
+
if sampling:
|
78 |
+
predictions = torch.multinomial(probs, num_samples=3)
|
79 |
+
values = probs[0, predictions]
|
80 |
if target_ids is not None:
|
81 |
probs = probs[..., target_ids]
|
82 |
+
if not sampling:
|
83 |
+
values, predictions = probs.topk(top_k)
|
84 |
|
85 |
result = []
|
86 |
single_mask = values.shape[0] == 1
|
|
|
112 |
pipeline_class=TempScalePipe,
|
113 |
pt_model=AutoModelForMaskedLM,
|
114 |
)
|
115 |
+
scrambler = pipeline("temp-scale", model="anferico/bert-for-patents")
|
116 |
|
117 |
+
def unmask(text, temp):
|
|
|
118 |
# text = add_mask(text)
|
119 |
+
split_text = text.split()
|
120 |
+
res = scrambler(text)
|
121 |
+
mask_pos = [i for i, t in enumerate(split_text) if 'MASK' in t][0]
|
122 |
out = {item["token_str"]: item["score"] for item in res}
|
123 |
+
score_to_str = {out[k]:k for k in out.keys()}
|
124 |
+
print(score_to_str)
|
125 |
+
print(out)
|
126 |
+
score_list = list(score_to_str.keys())
|
127 |
+
idx = np.argmax(np.random.multinomial(1, score_list, 1))
|
128 |
+
score = score_list[idx]
|
129 |
+
new_token = score_to_str[score]
|
130 |
+
split_text[mask_pos] = new_token
|
131 |
+
return out, ' '.join(split_text)
|
132 |
|
133 |
textbox = gr.Textbox(label="Type language here", lines=5)
|
134 |
+
textbox2 = gr.Textbox(placeholder="Type here...", lines=4)
|
135 |
+
temp_slider = gr.Slider(1.0, 1.5, value=1.0, label='Creativity')
|
136 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
demo = gr.Interface(
|
138 |
fn=unmask,
|
139 |
+
inputs=[textbox, temp_slider],
|
140 |
+
outputs=["label", textbox2],
|
141 |
+
examples=[[example, 1.2]],
|
142 |
)
|
143 |
|
144 |
demo.launch()
|