File size: 13,223 Bytes
d1253a8
8e901a2
107c2a4
863e074
8e901a2
863e074
da46c4a
5693ee5
8c2ee0f
da46c4a
5693ee5
 
863e074
f067bfb
d1253a8
8e901a2
 
 
 
 
 
d1253a8
8e901a2
 
 
 
 
 
107c2a4
0658988
 
107c2a4
 
 
8e901a2
 
 
 
107c2a4
809ba3d
 
 
 
 
8e901a2
 
 
0658988
 
809ba3d
 
0658988
 
8e901a2
0658988
8e901a2
 
 
 
 
 
 
809ba3d
 
 
 
8e901a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7508449
8e901a2
 
 
 
 
 
 
 
 
 
6d6063e
8e901a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515327e
8e901a2
 
 
 
 
 
107c2a4
 
8e901a2
 
 
515327e
 
 
 
 
8e901a2
0658988
8e901a2
0658988
 
8e901a2
 
 
 
 
 
 
 
 
399342f
8e901a2
 
 
 
 
 
 
809ba3d
8e901a2
 
107c2a4
 
8e901a2
 
809ba3d
8e901a2
 
 
 
515327e
8e901a2
 
809ba3d
8e901a2
 
107c2a4
87eb8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107c2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e901a2
5693ee5
 
 
 
 
8e901a2
 
 
 
 
 
 
 
 
 
863e074
d1253a8
8e901a2
d1253a8
0658988
8e901a2
 
0658988
 
 
 
 
 
 
8e901a2
 
 
 
 
 
 
 
5693ee5
8e901a2
 
 
 
5693ee5
8e901a2
8c2ee0f
8e901a2
8c2ee0f
d1253a8
5693ee5
f067bfb
5693ee5
 
0658988
 
809ba3d
 
0658988
8e901a2
 
 
5693ee5
8e901a2
 
 
 
5693ee5
 
8e901a2
 
 
 
 
 
 
 
 
1242077
8e901a2
 
 
 
 
 
 
5693ee5
 
8e901a2
8c2ee0f
87eb8f9
 
 
 
 
 
 
 
 
 
b268b1d
06aa2d9
f067bfb
 
5693ee5
8e901a2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import json
from dataclasses import dataclass, field, fields
from functools import cached_property
from pathlib import Path
from typing import Literal

import gradio as gr
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from pandas import DataFrame
from pandas.io.formats.style import Styler

from content import *

TASK_METRICS = {
    "arc": "acc_norm",
    "hellaswag": "acc_norm",
    "mmlu": "acc_norm",
    "truthfulqa": "mc2",
}

MODEL_TYPE_EMOJIS = {
    "pretrained": "🟢",
    "fine-tuned": "🔶",
    "instruction-tuned": "⭕",
    "RL-tuned": "🟦",
}

NOT_GIVEN_SYMBOL = "❔"


@dataclass
class Result:
    model_name: str
    short_name: str
    model_type: Literal["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned"]
    dutch_coverage: Literal["none", "pretrained", "fine-tuned"]
    num_parameters: int
    arc: float = field(default=np.nan)
    average: float = field(default=np.nan, init=False)
    hellaswag: float = field(default=np.nan)
    mmlu: float = field(default=np.nan)
    truthfulqa: float = field(default=np.nan)
    num_parameters_kmb: str = field(init=False)

    def __post_init__(self):
        if self.model_type not in ["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned", "not-given"]:
            raise ValueError(
                f"Model type {self.model_type} must be one of 'pretrained', 'fine-tuned',"
                f" 'instruction-tuned', 'RL-tuned', 'not-given"
            )
        if self.dutch_coverage not in ["none", "pretrained", "fine-tuned", "not-given"]:
            raise ValueError(
                f"Dutch coverage {self.dutch_coverage} must be one of 'none', 'pretrained', 'fine-tuned', 'not-given"
            )

        field_names = {f.name for f in fields(self)}
        for task_name in TASK_METRICS:
            if task_name not in field_names:
                raise ValueError(f"Task name {task_name} not found in Result class fields so cannot create DataFrame")

        if any([np.isnan(getattr(self, task_name)) for task_name in TASK_METRICS]):
            self.average = np.nan
        else:
            self.average = sum([getattr(self, task_name) for task_name in TASK_METRICS]) / 4
        self.num_parameters_kmb = convert_number_to_kmb(self.num_parameters)


@dataclass
class ResultSet:
    results: list[Result]
    column_names: dict[str, str] = field(default_factory=dict)
    column_types: dict[str, str] = field(default_factory=dict)

    def __post_init__(self):
        if not self.column_names:
            # Order will be the order of the columns in the DataFrame
            self.column_names = {
                "short_name": "Model",
                "model_type": "T",
                "dutch_coverage": "🇳🇱",
                "num_parameters": "Size",
                "average": "Avg.",
                "arc": "ARC (25-shot)",
                "hellaswag": "HellaSwag (10-shot)",
                "mmlu": "MMLU (5-shot)",
                "truthfulqa": "TruthfulQA (0-shot)",
            }
            self.column_types = {
                "Model": "markdown",
                "T": "str",
                "🇳🇱": "str",
                "Size": "str",
                "Avg.": "number",
                "ARC (25-shot)": "number",
                "HellaSwag (10-shot)": "number",
                "MMLU (5-shot)": "number",
                "TruthfulQA (0-shot)": "number",
            }

        for column_type in self.column_types:
            if column_type not in set(self.column_names.values()):
                raise ValueError(
                    f"Column names specified in column_types must be values in column_names."
                    f" {column_type} not found."
                )

        if "average" not in self.column_names:
            raise ValueError("Column names must contain 'average' column name")

        field_names = [f.name for f in fields(Result)]
        for column_name in self.column_names:
            if column_name not in field_names:
                raise ValueError(f"Column name {column_name} not found in Result class so cannot create DataFrame")

    @cached_property
    def df(self) -> DataFrame:
        data = [
            {col_name: getattr(result, attr) for attr, col_name in self.column_names.items()}
            for result in self.results
        ]

        df = pd.DataFrame(data)
        df = df.sort_values(by=self.column_names["average"], ascending=False)
        return df

    @cached_property
    def styled_df(self) -> Styler:
        data = [
            {
                col_name: (
                    f"<a target='_blank' href='https://huggingface.co/{result.model_name}'"
                    f" style='color: var(--link-text-color); text-decoration: underline;text-decoration-style:"
                    f" dotted;'>{result.short_name}</a>"
                )
                if attr == "short_name"
                else MODEL_TYPE_EMOJIS.get(result.model_type, NOT_GIVEN_SYMBOL)
                if attr == "model_type"
                else (result.dutch_coverage if result.dutch_coverage != "not-given" else NOT_GIVEN_SYMBOL)
                if attr == "dutch_coverage"
                else getattr(result, attr)
                for attr, col_name in self.column_names.items()
            }
            for result in self.results
        ]

        df = pd.DataFrame(data)
        df = df.sort_values(by=self.column_names["average"], ascending=False)
        number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
        styler = df.style.format("{:.4f}", subset=number_cols, na_rep="<missing>")

        def highlight_max(col):
            return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)

        styler = styler.apply(highlight_max, axis=0, subset=number_cols)
        num_params_col = self.column_names["num_parameters"]
        styler = styler.format(convert_number_to_kmb, subset=num_params_col)
        styler.set_caption("Leaderboard on Dutch benchmarks.")
        styler = styler.hide()
        return styler

    @cached_property
    def latex_df(self) -> Styler:
        number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
        styler = self.df.style.format("{:.2f}", subset=number_cols, na_rep="<missing>")

        def highlight_max(col):
            return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)

        styler = styler.apply(highlight_max, axis=0, subset=number_cols)
        num_params_col = self.column_names["num_parameters"]
        styler = styler.format(convert_number_to_kmb, subset=num_params_col)
        styler.set_caption("Leaderboard on Dutch benchmarks.")
        styler = styler.hide()
        return styler

    @cached_property
    def viz_checkboxes(self):
        model_col_name = self.column_names["short_name"]
        avg_col = self.column_names["average"]
        top3_models = self.df.sort_values(by=avg_col, ascending=False)[model_col_name].tolist()[:3]
        return gr.CheckboxGroup(self.df[model_col_name].tolist(), label="Models", value=top3_models)

    def plot(self, model_names: list[str]):
        if not model_names:
            return None

        # Only get task columns and model name
        task_columns = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "short_name"]
        df = self.df[task_columns]

        # Rename the columns to the task names
        reversed_col_names = {v: k for k, v in self.column_names.items() if v != "Model"}
        df = df.rename(columns=reversed_col_names)

        # Only keep the selected models
        df = df[df["Model"].isin(model_names)]

        # Melt the dataframe to long format
        df = df.melt(id_vars=["Model"], var_name="Task", value_name="Score").sort_values(by="Task")

        # Populate figure
        fig = go.Figure()
        for model_name in model_names:
            model_df = df[df["Model"] == model_name]
            scores = model_df["Score"].tolist()
            tasks = model_df["Task"].tolist()

            # Repeat the first point at the end to close the lines
            # Cf. https://community.plotly.com/t/closing-line-for-radar-cart-and-popup-window-on-chart-radar/47711/4
            scores.append(scores[0])
            tasks.append(tasks[0])

            fig.add_trace(go.Scatterpolar(r=scores, theta=tasks, name=model_name))

        fig.update_layout(
            title="Model performance on Dutch benchmarks",
        )

        return fig


def convert_number_to_kmb(number: int) -> str:
    """
    Converts a number to a string with K, M or B suffix
    :param number: the number to convert
    :return: a string with the number and a suffix, e.g. "7B", rounded to one decimal
    """
    if number >= 1_000_000_000:
        return f"{round(number / 1_000_000_000, 1)}B"
    elif number >= 1_000_000:
        return f"{round(number / 1_000_000, 1)}M"
    elif number >= 1_000:
        return f"{round(number / 1_000, 1)}K"
    else:
        return str(number)


def collect_results() -> ResultSet:
    """
    Collects results from the evals folder and returns a dictionary of results
    :return: a dictionary of results where the keys are typles of (model_name, language) and the values are
    dictionaries of the form {benchmark_name: performance_score}
    """
    evals_dir = Path(__file__).parent.joinpath("evals")
    pf_overview = evals_dir.joinpath("models.json")
    if not pf_overview.exists():
        raise ValueError(
            f"Overview file {pf_overview} not found. Make sure to generate it first with `generate_overview_json.py`."
        )

    model_info = json.loads(pf_overview.read_text(encoding="utf-8"))
    model_results = {}
    for pfin in evals_dir.rglob("*.json"):
        data = json.loads(pfin.read_text(encoding="utf-8"))

        if "results" not in data:
            continue

        task_results = data["results"]
        short_name = pfin.stem.split("_", 2)[2].lower()

        if short_name not in model_info:
            raise KeyError(
                f"Model {short_name} not found in overview file {pf_overview.name}. This means that a results JSON"
                f" file exists that has not yet been processed. First run the `generate_overview_json.py` script."
            )

        if short_name not in model_results:
            model_results[short_name] = {
                "short_name": short_name,
                "model_name": model_info[short_name]["model_name"],
                "model_type": model_info[short_name]["model_type"],
                "dutch_coverage": model_info[short_name]["dutch_coverage"],
                "num_parameters": model_info[short_name]["num_parameters"],
            }

        for task_name, task_result in task_results.items():
            task_name = task_name.rsplit("_", 1)[0]
            metric = TASK_METRICS[task_name]
            model_results[short_name][task_name] = task_result[metric]

    model_results = ResultSet([Result(**res) for short_name, res in model_results.items()])

    return model_results


with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRO_TEXT)

    gr.Markdown(
        f"## Leaderboard\nOnly representative for the Dutch version (`*_nl`) of the benchmarks!"
        " All models have been benchmarked in 8-bit. `<missing>` values indicate that those benchmarks are still"
        " pending."
    )

    results = collect_results()

    gr.components.Dataframe(
        results.styled_df,
        headers=list(results.df.columns),
        datatype=[results.column_types[col] for col in results.df.columns],  # To ensure same order as headers
        interactive=False,
        elem_id="leaderboard-table",
    )

    with gr.Row():
        with gr.Column():
            modeltypes_str = "<br>".join([f"- {emoji}: {modeltype}" for modeltype, emoji in MODEL_TYPE_EMOJIS.items()])
            gr.Markdown(f"Model types:<br>{modeltypes_str}")

        with gr.Column():
            gr.Markdown(
                f"Language coverage ({results.column_names['dutch_coverage']}):"
                f"<br>- `none`: no explicit/deliberate Dutch coverage,"
                f"<br>- `pretrained`: pretrained on Dutch data,"
                f"<br>- `fine-tuned`: fine-tuned on Dutch data"
            )

        with gr.Column():
            metrics_str = "<br>".join([f"- {task}: `{metric}`" for task, metric in TASK_METRICS.items()])
            gr.Markdown(f"Reported metrics:<br>{metrics_str}")

    gr.Markdown("## LaTeX")
    gr.Code(results.latex_df.to_latex(convert_css=True))

    gr.Markdown("## Visualization")
    with gr.Row():
        with gr.Column():
            buttons = results.viz_checkboxes

        with gr.Column(scale=2):
            plot = gr.Plot(container=True)
            buttons.change(results.plot, inputs=buttons, outputs=[plot])
            demo.load(results.plot, inputs=buttons, outputs=[plot])

    gr.Markdown(DISCLAIMER, elem_classes="markdown-text")
    gr.Markdown(CREDIT, elem_classes="markdown-text")
    gr.Markdown(CITATION, elem_classes="markdown-text")


if __name__ == "__main__":
    demo.launch()