Spaces:
Runtime error
Runtime error
DDingcheol
commited on
Commit
ยท
b28441d
1
Parent(s):
7063ff1
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,81 @@
|
|
1 |
#ํ๊น
ํ์ด์ค์์ ๋์๊ฐ ์ ์๋๋ก ๋ฐ๊พธ์ด ๋ณด์์
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
1 |
#ํ๊น
ํ์ด์ค์์ ๋์๊ฐ ์ ์๋๋ก ๋ฐ๊พธ์ด ๋ณด์์
|
2 |
+
import torch
|
3 |
+
from transformers import BertTokenizerFast, BertForQuestionAnswering, Trainer, TrainingArguments
|
4 |
+
from datasets import load_dataset
|
5 |
+
from collections import defaultdict
|
6 |
+
|
7 |
+
# ๋ฐ์ดํฐ ๋ถ๋ฌ์ค๊ธฐ
|
8 |
+
dataset_load = load_dataset('Multimodal-Fatima/OK-VQA_train')
|
9 |
+
dataset = dataset_load['train'].select(range(300))
|
10 |
+
|
11 |
+
# ๋ถํ์ํ ํน์ฑ ์ ํ
|
12 |
+
selected_features = ['image', 'answers', 'question']
|
13 |
+
selected_dataset = dataset.map(lambda ex: {feature: ex[feature] for feature in selected_features})
|
14 |
+
|
15 |
+
# ์ํํธ ์ธ์ฝ๋ฉ
|
16 |
+
answers_to_id = defaultdict(lambda: len(answers_to_id))
|
17 |
+
selected_dataset = selected_dataset.map(lambda ex: {
|
18 |
+
'answers': [answers_to_id[ans] for ans in ex['answers']],
|
19 |
+
'question': ex['question'],
|
20 |
+
'image': ex['image']
|
21 |
+
})
|
22 |
+
|
23 |
+
id_to_answers = {v: k for k, v in answers_to_id.items()}
|
24 |
+
id_to_labels = {k: ex['answers'] for k, ex in enumerate(selected_dataset)}
|
25 |
+
|
26 |
+
selected_dataset = selected_dataset.map(lambda ex: {'answers': id_to_labels.get(ex['answers'][0]),
|
27 |
+
'question': ex['question'],
|
28 |
+
'image': ex['image']})
|
29 |
+
|
30 |
+
flattened_features = []
|
31 |
+
|
32 |
+
for ex in selected_dataset:
|
33 |
+
flattened_example = {
|
34 |
+
'answers': ex['answers'],
|
35 |
+
'question': ex['question'],
|
36 |
+
'image': ex['image'],
|
37 |
+
}
|
38 |
+
flattened_features.append(flattened_example)
|
39 |
+
|
40 |
+
# ๋ชจ๋ธ ๊ฐ์ ธ์ค๊ธฐ
|
41 |
+
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
|
42 |
+
|
43 |
+
model_name = 'microsoft/git-base-vqav2'
|
44 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
45 |
+
|
46 |
+
# Trainer๋ฅผ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ ํ์ต
|
47 |
+
tokenizer = BertTokenizerFast.from_pretrained('bert-base-multilingual-cased')
|
48 |
+
|
49 |
+
def preprocess_function(examples):
|
50 |
+
tokenized_inputs = tokenizer(examples['question'], truncation=True, padding=True)
|
51 |
+
return {
|
52 |
+
'input_ids': tokenized_inputs['input_ids'],
|
53 |
+
'attention_mask': tokenized_inputs['attention_mask'],
|
54 |
+
'pixel_values': [(4, 3, 244, 244)] * len(tokenized_inputs['input_ids']),
|
55 |
+
'pixel_mask': [1] * len(tokenized_inputs['input_ids']),
|
56 |
+
'labels': [[label] for label in examples['answers']]
|
57 |
+
}
|
58 |
+
|
59 |
+
dataset = load_dataset("Multimodal-Fatima/OK-VQA_train")['train'].select(range(300))
|
60 |
+
ok_vqa_dataset = dataset.map(preprocess_function, batched=True)
|
61 |
+
ok_vqa_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'pixel_values', 'pixel_mask', 'labels'])
|
62 |
+
|
63 |
+
training_args = TrainingArguments(
|
64 |
+
output_dir='./results',
|
65 |
+
num_train_epochs=20,
|
66 |
+
per_device_train_batch_size=4,
|
67 |
+
logging_steps=500,
|
68 |
+
)
|
69 |
+
|
70 |
+
trainer = Trainer(
|
71 |
+
model=model,
|
72 |
+
args=training_args,
|
73 |
+
train_dataset=ok_vqa_dataset
|
74 |
+
)
|
75 |
+
|
76 |
+
# ๋ชจ๋ธ ํ์ต
|
77 |
+
trainer.train()
|
78 |
+
|
79 |
|
80 |
import gradio as gr
|
81 |
import torch
|