DawnC commited on
Commit
1aac452
·
1 Parent(s): a49aed3

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +222 -57
scoring_calculation_system.py CHANGED
@@ -1161,53 +1161,205 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
1161
  return min(0.2, adaptability_score)
1162
 
1163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
  def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
1165
- """
1166
- 改進的品種相容性評分系統
1167
- 通過更細緻的特徵評估和動態權重調整,自然產生分數差異
1168
- """
1169
- # 評估關鍵特徵的匹配度,使用更極端的調整係數
1170
  def evaluate_key_features():
1171
- # 空間適配性評估
1172
  space_multiplier = 1.0
1173
  if user_prefs.living_space == 'apartment':
1174
  if breed_info['Size'] == 'Giant':
1175
- space_multiplier = 0.3 # 嚴重不適合
1176
  elif breed_info['Size'] == 'Large':
1177
- space_multiplier = 0.4 # 明顯不適合
 
 
1178
  elif breed_info['Size'] == 'Small':
1179
- space_multiplier = 1.4 # 明顯優勢
1180
-
1181
- # 運動需求評估
1182
  exercise_multiplier = 1.0
1183
  exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
 
 
 
 
1184
  if exercise_needs == 'VERY HIGH':
1185
- if user_prefs.exercise_time < 60:
1186
- exercise_multiplier = 0.3 # 嚴重不足
1187
  elif user_prefs.exercise_time > 150:
1188
- exercise_multiplier = 1.5 # 完美匹配
1189
- elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
1190
- exercise_multiplier = 0.5 # 運動過度
 
 
 
 
 
 
1191
 
1192
  return space_multiplier, exercise_multiplier
1193
 
1194
- # 計算經驗匹配度
 
 
 
 
 
 
 
 
 
 
 
1195
  def evaluate_experience():
1196
  exp_multiplier = 1.0
1197
  care_level = breed_info.get('Care Level', 'MODERATE')
1198
 
1199
  if care_level == 'High':
1200
  if user_prefs.experience_level == 'beginner':
1201
- exp_multiplier = 0.4
1202
  elif user_prefs.experience_level == 'advanced':
1203
- exp_multiplier = 1.3
1204
  elif care_level == 'Low':
1205
  if user_prefs.experience_level == 'advanced':
1206
- exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
1207
 
1208
  return exp_multiplier
1209
 
1210
- # 取得特徵調整係數
1211
  space_mult, exercise_mult = evaluate_key_features()
1212
  exp_mult = evaluate_experience()
1213
 
@@ -1217,77 +1369,90 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
1217
  'exercise': scores['exercise'] * exercise_mult,
1218
  'experience': scores['experience'] * exp_mult,
1219
  'grooming': scores['grooming'],
1220
- 'health': scores['health'],
1221
  'noise': scores['noise']
1222
  }
1223
 
1224
- # 計算加權平均,關鍵特徵佔更大權重
1225
  weights = {
1226
- 'space': 0.35,
1227
- 'exercise': 0.30,
1228
- 'experience': 0.20,
1229
  'grooming': 0.15,
1230
  'health': 0.10,
1231
  'noise': 0.10
1232
  }
1233
 
1234
- # 動態調整權重
1235
  if user_prefs.has_children:
1236
  if user_prefs.children_age == 'toddler':
1237
- weights['noise'] *= 1.5 # 幼童對噪音更敏感
1238
- weights['experience'] *= 1.3 # 需要更有經驗的飼主
1239
-
 
 
 
 
1240
  if user_prefs.living_space == 'apartment':
1241
- weights['space'] *= 1.4 # 公寓空間限制更重要
1242
- weights['noise'] *= 1.3 # 噪音問題更重要
1243
 
1244
  # 運動時間極端情況
1245
  if user_prefs.exercise_time < 30:
1246
- weights['exercise'] *= 1.5 # 運動時間極少時加重權重
1247
  elif user_prefs.exercise_time > 150:
1248
- weights['exercise'] *= 1.3 # 運動時間充足時略微加重
1249
 
1250
  # 正規化權重
1251
  total_weight = sum(weights.values())
1252
  normalized_weights = {k: v/total_weight for k, v in weights.items()}
1253
 
1254
- # 計算最終分數
1255
- final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
1256
-
1257
  # 品種特性加成
1258
  breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
1259
 
1260
- # 整合最終分數,保持在0-1範圍內
1261
- return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
 
 
 
 
1262
 
 
 
 
 
 
 
1263
 
1264
  def amplify_score_extreme(score: float) -> float:
1265
  """
1266
- 改進的分數轉換函數,提供更大的分數區間和更明顯的差異
1267
 
1268
- 轉換邏輯:
1269
- - 極差匹配 (0.0-0.2) -> 50-60%
1270
- - 較差匹配 (0.2-0.4) -> 60-70%
1271
- - 中等匹配 (0.4-0.6) -> 70-82%
1272
- - 良好匹配 (0.6-0.8) -> 82-90%
1273
- - 優秀匹配 (0.8-1.0) -> 90-98%
 
1274
  """
1275
  if score < 0.2:
1276
- # 極差匹配:更低的起始分數
1277
- return 0.50 + (score / 0.2) * 0.10
1278
  elif score < 0.4:
1279
- # 較差匹配:緩慢增長
1280
  position = (score - 0.2) / 0.2
1281
- return 0.60 + position * 0.10
1282
  elif score < 0.6:
1283
- # 中等匹配:較大的分數增長
1284
  position = (score - 0.4) / 0.2
1285
- return 0.70 + position * 0.12
1286
  elif score < 0.8:
1287
- # 良好匹配:快速增長
1288
  position = (score - 0.6) / 0.2
1289
- return 0.82 + position * 0.08
 
 
 
1290
  else:
1291
- # 優秀匹配:達到更高分數
1292
- position = (score - 0.8) / 0.2
1293
- return 0.90 + position * 0.08
 
1161
  return min(0.2, adaptability_score)
1162
 
1163
 
1164
+ # def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
1165
+ # """
1166
+ # 改進的品種相容性評分系統
1167
+ # 通過更細緻的特徵評估和動態權重調整,自然產生分數差異
1168
+ # """
1169
+ # # 評估關鍵特徵的匹配度,使用更極端的調整係數
1170
+ # def evaluate_key_features():
1171
+ # # 空間適配性評估
1172
+ # space_multiplier = 1.0
1173
+ # if user_prefs.living_space == 'apartment':
1174
+ # if breed_info['Size'] == 'Giant':
1175
+ # space_multiplier = 0.3 # 嚴重不適合
1176
+ # elif breed_info['Size'] == 'Large':
1177
+ # space_multiplier = 0.4 # 明顯不適合
1178
+ # elif breed_info['Size'] == 'Small':
1179
+ # space_multiplier = 1.4 # 明顯優勢
1180
+
1181
+ # # 運動需求評估
1182
+ # exercise_multiplier = 1.0
1183
+ # exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
1184
+ # if exercise_needs == 'VERY HIGH':
1185
+ # if user_prefs.exercise_time < 60:
1186
+ # exercise_multiplier = 0.3 # 嚴重不足
1187
+ # elif user_prefs.exercise_time > 150:
1188
+ # exercise_multiplier = 1.5 # 完美匹配
1189
+ # elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
1190
+ # exercise_multiplier = 0.5 # 運動過度
1191
+
1192
+ # return space_multiplier, exercise_multiplier
1193
+
1194
+ # # 計算經驗匹配度
1195
+ # def evaluate_experience():
1196
+ # exp_multiplier = 1.0
1197
+ # care_level = breed_info.get('Care Level', 'MODERATE')
1198
+
1199
+ # if care_level == 'High':
1200
+ # if user_prefs.experience_level == 'beginner':
1201
+ # exp_multiplier = 0.4
1202
+ # elif user_prefs.experience_level == 'advanced':
1203
+ # exp_multiplier = 1.3
1204
+ # elif care_level == 'Low':
1205
+ # if user_prefs.experience_level == 'advanced':
1206
+ # exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
1207
+
1208
+ # return exp_multiplier
1209
+
1210
+ # # 取得特徵調整係數
1211
+ # space_mult, exercise_mult = evaluate_key_features()
1212
+ # exp_mult = evaluate_experience()
1213
+
1214
+ # # 調整基礎分數
1215
+ # adjusted_scores = {
1216
+ # 'space': scores['space'] * space_mult,
1217
+ # 'exercise': scores['exercise'] * exercise_mult,
1218
+ # 'experience': scores['experience'] * exp_mult,
1219
+ # 'grooming': scores['grooming'],
1220
+ # 'health': scores['health'],
1221
+ # 'noise': scores['noise']
1222
+ # }
1223
+
1224
+ # # 計算加權平均,關鍵特徵佔更大權重
1225
+ # weights = {
1226
+ # 'space': 0.35,
1227
+ # 'exercise': 0.30,
1228
+ # 'experience': 0.20,
1229
+ # 'grooming': 0.15,
1230
+ # 'health': 0.10,
1231
+ # 'noise': 0.10
1232
+ # }
1233
+
1234
+ # # 動態調整權重
1235
+ # if user_prefs.has_children:
1236
+ # if user_prefs.children_age == 'toddler':
1237
+ # weights['noise'] *= 1.5 # 幼童對噪音更敏感
1238
+ # weights['experience'] *= 1.3 # 需要更有經驗的飼主
1239
+
1240
+ # if user_prefs.living_space == 'apartment':
1241
+ # weights['space'] *= 1.4 # 公寓空間限制更重要
1242
+ # weights['noise'] *= 1.3 # 噪音問題更重要
1243
+
1244
+ # # 運動時間極端情況
1245
+ # if user_prefs.exercise_time < 30:
1246
+ # weights['exercise'] *= 1.5 # 運動時間極少時加重權重
1247
+ # elif user_prefs.exercise_time > 150:
1248
+ # weights['exercise'] *= 1.3 # 運動時間充足時略微加重
1249
+
1250
+ # # 正規化權重
1251
+ # total_weight = sum(weights.values())
1252
+ # normalized_weights = {k: v/total_weight for k, v in weights.items()}
1253
+
1254
+ # # 計算最終分數
1255
+ # final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
1256
+
1257
+ # # 品種特性加成
1258
+ # breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
1259
+
1260
+ # # 整合最終分數,保持在0-1範圍內
1261
+ # return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
1262
+
1263
+
1264
+ # def amplify_score_extreme(score: float) -> float:
1265
+ # """
1266
+ # 改進的分數轉換函數,提供更大的分數區間和更明顯的差異
1267
+
1268
+ # 轉換邏輯:
1269
+ # - 極差匹配 (0.0-0.2) -> 50-60%
1270
+ # - 較差匹配 (0.2-0.4) -> 60-70%
1271
+ # - 中等匹配 (0.4-0.6) -> 70-82%
1272
+ # - 良好匹配 (0.6-0.8) -> 82-90%
1273
+ # - 優秀匹配 (0.8-1.0) -> 90-98%
1274
+ # """
1275
+ # if score < 0.2:
1276
+ # # 極差匹配:更低的起始分數
1277
+ # return 0.50 + (score / 0.2) * 0.10
1278
+ # elif score < 0.4:
1279
+ # # 較差匹配:緩慢增長
1280
+ # position = (score - 0.2) / 0.2
1281
+ # return 0.60 + position * 0.10
1282
+ # elif score < 0.6:
1283
+ # # 中等匹配:較大的分數增長
1284
+ # position = (score - 0.4) / 0.2
1285
+ # return 0.70 + position * 0.12
1286
+ # elif score < 0.8:
1287
+ # # 良好匹配:快速增長
1288
+ # position = (score - 0.6) / 0.2
1289
+ # return 0.82 + position * 0.08
1290
+ # else:
1291
+ # # 優秀匹配:達到更高分數
1292
+ # position = (score - 0.8) / 0.2
1293
+ # return 0.90 + position * 0.08
1294
+
1295
+
1296
  def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
1297
+ """改進的品種相容性評分系統"""
1298
+
 
 
 
1299
  def evaluate_key_features():
1300
+ # 空間適配性評估 - 更極端的調整
1301
  space_multiplier = 1.0
1302
  if user_prefs.living_space == 'apartment':
1303
  if breed_info['Size'] == 'Giant':
1304
+ space_multiplier = 0.2 # 更嚴重的懲罰
1305
  elif breed_info['Size'] == 'Large':
1306
+ space_multiplier = 0.3
1307
+ elif breed_info['Size'] == 'Medium':
1308
+ space_multiplier = 0.7
1309
  elif breed_info['Size'] == 'Small':
1310
+ space_multiplier = 1.6 # 更大的獎勵
1311
+
1312
+ # 運動需求評估 - 更細緻的匹配
1313
  exercise_multiplier = 1.0
1314
  exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
1315
+
1316
+ # 運動時間差異計算
1317
+ time_diff_ratio = abs(user_prefs.exercise_time - get_ideal_exercise_time(exercise_needs)) / 60.0
1318
+
1319
  if exercise_needs == 'VERY HIGH':
1320
+ if user_prefs.exercise_time < 90:
1321
+ exercise_multiplier = max(0.2, 1.0 - time_diff_ratio)
1322
  elif user_prefs.exercise_time > 150:
1323
+ exercise_multiplier = min(2.0, 1.0 + time_diff_ratio/2)
1324
+ elif exercise_needs == 'HIGH':
1325
+ if user_prefs.exercise_time < 60:
1326
+ exercise_multiplier = max(0.3, 1.0 - time_diff_ratio)
1327
+ elif user_prefs.exercise_time > 120:
1328
+ exercise_multiplier = min(1.8, 1.0 + time_diff_ratio/2)
1329
+ elif exercise_needs == 'LOW':
1330
+ if user_prefs.exercise_time > 120:
1331
+ exercise_multiplier = max(0.4, 1.0 - time_diff_ratio/2)
1332
 
1333
  return space_multiplier, exercise_multiplier
1334
 
1335
+ def get_ideal_exercise_time(exercise_needs: str) -> int:
1336
+ """獲取理想運動時間"""
1337
+ return {
1338
+ 'VERY HIGH': 150,
1339
+ 'HIGH': 120,
1340
+ 'MODERATE HIGH': 90,
1341
+ 'MODERATE': 60,
1342
+ 'MODERATE LOW': 45,
1343
+ 'LOW': 30
1344
+ }.get(exercise_needs, 60)
1345
+
1346
+ # 經驗匹配度評估 - 更強的影響力
1347
  def evaluate_experience():
1348
  exp_multiplier = 1.0
1349
  care_level = breed_info.get('Care Level', 'MODERATE')
1350
 
1351
  if care_level == 'High':
1352
  if user_prefs.experience_level == 'beginner':
1353
+ exp_multiplier = 0.3 # 更嚴重的懲罰
1354
  elif user_prefs.experience_level == 'advanced':
1355
+ exp_multiplier = 1.5 # 更大的獎勵
1356
  elif care_level == 'Low':
1357
  if user_prefs.experience_level == 'advanced':
1358
+ exp_multiplier = 0.8
1359
 
1360
  return exp_multiplier
1361
 
1362
+ # 計算調整係數
1363
  space_mult, exercise_mult = evaluate_key_features()
1364
  exp_mult = evaluate_experience()
1365
 
 
1369
  'exercise': scores['exercise'] * exercise_mult,
1370
  'experience': scores['experience'] * exp_mult,
1371
  'grooming': scores['grooming'],
1372
+ 'health': scores['health'] * (1.5 if user_prefs.health_sensitivity == 'high' else 1.0),
1373
  'noise': scores['noise']
1374
  }
1375
 
1376
+ # 基礎權重
1377
  weights = {
1378
+ 'space': 0.25,
1379
+ 'exercise': 0.25,
1380
+ 'experience': 0.15,
1381
  'grooming': 0.15,
1382
  'health': 0.10,
1383
  'noise': 0.10
1384
  }
1385
 
1386
+ # 動態權重調整 - 更強的條件反應
1387
  if user_prefs.has_children:
1388
  if user_prefs.children_age == 'toddler':
1389
+ weights['noise'] *= 2.0 # 更強的噪音影響
1390
+ weights['experience'] *= 1.5
1391
+ weights['health'] *= 1.3
1392
+ elif user_prefs.children_age == 'school_age':
1393
+ weights['noise'] *= 1.5
1394
+ weights['experience'] *= 1.3
1395
+
1396
  if user_prefs.living_space == 'apartment':
1397
+ weights['space'] *= 1.8 # 更強的空間限制
1398
+ weights['noise'] *= 1.6
1399
 
1400
  # 運動時間極端情況
1401
  if user_prefs.exercise_time < 30:
1402
+ weights['exercise'] *= 2.0
1403
  elif user_prefs.exercise_time > 150:
1404
+ weights['exercise'] *= 1.5
1405
 
1406
  # 正規化權重
1407
  total_weight = sum(weights.values())
1408
  normalized_weights = {k: v/total_weight for k, v in weights.items()}
1409
 
1410
+ # 計算基礎分數
1411
+ base_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
1412
+
1413
  # 品種特性加成
1414
  breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
1415
 
1416
+ # 動態整合係數
1417
+ bonus_weight = min(0.25, max(0.15, breed_bonus)) # 讓優秀特性有更大影響
1418
+
1419
+ # 完美匹配加成
1420
+ if all(score >= 0.8 for score in adjusted_scores.values()):
1421
+ base_score *= 1.2
1422
 
1423
+ # 極端不匹配懲罰
1424
+ if any(score <= 0.3 for score in adjusted_scores.values()):
1425
+ base_score *= 0.6
1426
+
1427
+ return min(1.0, max(0.0, (base_score * (1.0 - bonus_weight)) + (breed_bonus * bonus_weight)))
1428
+
1429
 
1430
  def amplify_score_extreme(score: float) -> float:
1431
  """
1432
+ 改進的分數轉換函數,提供更動態的分數範圍
1433
 
1434
+ 動態轉換邏輯:
1435
+ - 極差匹配 (0.0-0.2) -> 45-58%
1436
+ - 較差匹配 (0.2-0.4) -> 58-72%
1437
+ - 中等匹配 (0.4-0.6) -> 72-85%
1438
+ - 良好匹配 (0.6-0.8) -> 85-92%
1439
+ - 優秀匹配 (0.8-0.9) -> 92-96%
1440
+ - 完美匹配 (0.9-1.0) -> 96-99%
1441
  """
1442
  if score < 0.2:
1443
+ return 0.45 + (score / 0.2) * 0.13
 
1444
  elif score < 0.4:
 
1445
  position = (score - 0.2) / 0.2
1446
+ return 0.58 + position * 0.14
1447
  elif score < 0.6:
 
1448
  position = (score - 0.4) / 0.2
1449
+ return 0.72 + position * 0.13
1450
  elif score < 0.8:
 
1451
  position = (score - 0.6) / 0.2
1452
+ return 0.85 + position * 0.07
1453
+ elif score < 0.9:
1454
+ position = (score - 0.8) / 0.1
1455
+ return 0.92 + position * 0.04
1456
  else:
1457
+ position = (score - 0.9) / 0.1
1458
+ return 0.96 + position * 0.03