DawnC commited on
Commit
2952510
·
1 Parent(s): 9cafd03

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +23 -25
scoring_calculation_system.py CHANGED
@@ -2137,19 +2137,29 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
2137
  return multiplier
2138
 
2139
  def evaluate_breed_specific_requirements():
2140
- """評估品種特定的要求"""
2141
  multiplier = 1.0
2142
  exercise_time = user_prefs.exercise_time
2143
  exercise_type = user_prefs.exercise_type
2144
 
2145
- # 特定品種的運動模式評估
2146
- if 'sprint' in breed_info.get('Temperament', '').lower():
 
 
 
 
 
 
 
 
 
 
 
 
2147
  if exercise_time > 120 and exercise_type != 'active_training':
2148
- multiplier *= 0.7 # 衝刺型品種不適合長時間中低強度運動
2149
 
2150
- # 工作犬種的特殊需求
2151
- if any(trait in breed_info.get('Temperament', '').lower()
2152
- for trait in ['working', 'herding']):
2153
  if exercise_time < 90 or exercise_type == 'light_walks':
2154
  multiplier *= 0.7
2155
 
@@ -2319,42 +2329,30 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
2319
 
2320
 
2321
  def amplify_score_extreme(score: float) -> float:
2322
- """
2323
- 優化分數分布以提供更有意義的評分範圍
2324
-
2325
- 這個函數的設計理念是:
2326
- 1. 讓優秀的匹配能得到90%以上的高分
2327
- 2. 保持合理的分數差異
2328
- 3. 確保即使是較低匹配也有參考價值
2329
- """
2330
  def smooth_curve(x: float, steepness: float = 12) -> float:
2331
  import math
2332
  return 1 / (1 + math.exp(-steepness * (x - 0.5)))
2333
 
2334
- # 處理最佳匹配:讓頂級匹配能達到95%以上
2335
  if score >= 0.9:
2336
  position = (score - 0.9) / 0.1
2337
- return 0.95 + (position * 0.05) # 90-100的原始分映射到95-100
2338
 
2339
- # 處理優秀匹配:提供更高的基準分數
2340
  elif score >= 0.8:
2341
  position = (score - 0.8) / 0.1
2342
- return 0.88 + (position * 0.07) # 80-90的原始分映射到88-95
2343
 
2344
- # 處理良好匹配:確保合格的配對有好的分數
2345
  elif score >= 0.7:
2346
  position = (score - 0.7) / 0.1
2347
- return 0.80 + (position * 0.08) # 70-80的原始分映射到80-88
2348
 
2349
- # 處理一般匹配:給予合理的參考分數
2350
  elif score >= 0.5:
2351
  position = (score - 0.5) / 0.2
2352
- return 0.70 + (smooth_curve(position) * 0.10) # 50-70的原始分映射到70-80
2353
 
2354
- # 處理較低匹配:保持參考價值
2355
  else:
2356
  position = score / 0.5
2357
- return 0.65 + (smooth_curve(position) * 0.05) # 50以下的原始分映射到65-70
2358
 
2359
 
2360
  # def amplify_score_extreme(score: float) -> float:
 
2137
  return multiplier
2138
 
2139
  def evaluate_breed_specific_requirements():
2140
+ """評估品種特定的要求,加強運動需求的判斷"""
2141
  multiplier = 1.0
2142
  exercise_time = user_prefs.exercise_time
2143
  exercise_type = user_prefs.exercise_type
2144
 
2145
+ # 檢查品種的基本特性
2146
+ temperament = breed_info.get('Temperament', '').lower()
2147
+ description = breed_info.get('Description', '').lower()
2148
+ exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
2149
+
2150
+ # 加強運動需求的匹配判斷
2151
+ if exercise_needs == 'LOW':
2152
+ if exercise_time > 90: # 如果用戶運動時間過長
2153
+ multiplier *= 0.5 # 給予更強的懲罰
2154
+ elif exercise_needs == 'VERY HIGH':
2155
+ if exercise_time < 60: # 如果用戶運動時間過短
2156
+ multiplier *= 0.5
2157
+
2158
+ if 'sprint' in temperament:
2159
  if exercise_time > 120 and exercise_type != 'active_training':
2160
+ multiplier *= 0.7
2161
 
2162
+ if any(trait in temperament for trait in ['working', 'herding']):
 
 
2163
  if exercise_time < 90 or exercise_type == 'light_walks':
2164
  multiplier *= 0.7
2165
 
 
2329
 
2330
 
2331
  def amplify_score_extreme(score: float) -> float:
2332
+ """優化分數分布,提供更高的分數範圍"""
 
 
 
 
 
 
 
2333
  def smooth_curve(x: float, steepness: float = 12) -> float:
2334
  import math
2335
  return 1 / (1 + math.exp(-steepness * (x - 0.5)))
2336
 
 
2337
  if score >= 0.9:
2338
  position = (score - 0.9) / 0.1
2339
+ return 0.96 + (position * 0.04) # 90-100的原始分映射到96-100
2340
 
 
2341
  elif score >= 0.8:
2342
  position = (score - 0.8) / 0.1
2343
+ return 0.90 + (position * 0.06) # 80-90的原始分映射到90-96
2344
 
 
2345
  elif score >= 0.7:
2346
  position = (score - 0.7) / 0.1
2347
+ return 0.82 + (position * 0.08) # 70-80的原始分映射到82-90
2348
 
 
2349
  elif score >= 0.5:
2350
  position = (score - 0.5) / 0.2
2351
+ return 0.75 + (smooth_curve(position) * 0.07) # 50-70的原始分映射到75-82
2352
 
 
2353
  else:
2354
  position = score / 0.5
2355
+ return 0.70 + (smooth_curve(position) * 0.05) # 50以下的原始分映射到70-75
2356
 
2357
 
2358
  # def amplify_score_extreme(score: float) -> float: