DawnC commited on
Commit
4e784fb
·
1 Parent(s): ce4e4fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -23
app.py CHANGED
@@ -194,47 +194,54 @@ async def predict_single_dog(image):
194
 
195
  # return dogs
196
 
197
- async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55, min_area_ratio=0.01, overlap_threshold=0.8):
198
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
199
  dogs = []
200
  boxes = []
201
- image_area = image.width * image.height
202
 
203
  for box in results.boxes:
204
  if box.cls == 16: # COCO dataset class for dog is 16
205
  xyxy = box.xyxy[0].tolist()
206
  confidence = box.conf.item()
207
-
208
- # 計算檢測框面積
209
- box_area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
210
-
211
- # 如果檢測框面積小於圖片面積的一定比例,則忽略
212
- if box_area / image_area < min_area_ratio:
213
- continue
214
-
215
  boxes.append((xyxy, confidence))
216
 
217
  if not boxes:
218
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
219
  else:
220
- # 使用非最大抑制
221
  nms_boxes = non_max_suppression(boxes, iou_threshold)
222
 
223
- # 進一步合併重疊嚴重的框
224
- merged_boxes = merge_overlapping_boxes(nms_boxes, overlap_threshold)
225
-
226
- for box, confidence in merged_boxes:
227
- x1, y1, x2, y2 = box
228
- w, h = x2 - x1, y2 - y1
229
- x1 = max(0, x1 - w * 0.05)
230
- y1 = max(0, y1 - h * 0.05)
231
- x2 = min(image.width, x2 + w * 0.05)
232
- y2 = min(image.height, y2 + h * 0.05)
233
  cropped_image = image.crop((x1, y1, x2, y2))
234
- dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
 
 
235
 
236
  return dogs
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
  def merge_overlapping_boxes(boxes, overlap_threshold):
239
  merged = []
240
  while boxes:
@@ -369,7 +376,7 @@ async def predict(image):
369
  explanations.append(dog_explanation)
370
  buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
371
  else:
372
- explanations.append("The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
373
 
374
 
375
  final_explanation = "\n\n".join(explanations)
 
194
 
195
  # return dogs
196
 
197
+ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
198
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
199
  dogs = []
200
  boxes = []
 
201
 
202
  for box in results.boxes:
203
  if box.cls == 16: # COCO dataset class for dog is 16
204
  xyxy = box.xyxy[0].tolist()
205
  confidence = box.conf.item()
 
 
 
 
 
 
 
 
206
  boxes.append((xyxy, confidence))
207
 
208
  if not boxes:
209
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
210
  else:
 
211
  nms_boxes = non_max_suppression(boxes, iou_threshold)
212
 
213
+ for box, confidence in nms_boxes:
214
+ x1, y1, x2, y2 = [int(coord) for coord in box]
 
 
 
 
 
 
 
 
215
  cropped_image = image.crop((x1, y1, x2, y2))
216
+
217
+ if is_valid_dog(cropped_image):
218
+ dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
219
 
220
  return dogs
221
 
222
+ def is_valid_dog(image):
223
+ # 將PIL Image轉換為numpy陣列
224
+ img_array = np.array(image)
225
+
226
+ # 1. 簡單的紋理檢測
227
+ gray = np.mean(img_array, axis=2)
228
+ texture = np.std(gray)
229
+
230
+ # 2. 顏色分布檢測
231
+ img_rgb = img_array.reshape(-1, 3)
232
+ kmeans = KMeans(n_clusters=3, n_init=10)
233
+ kmeans.fit(img_rgb)
234
+ colors = kmeans.cluster_centers_
235
+ color_variety = np.std(colors)
236
+
237
+ # 3. 形狀檢測(簡化版,檢查長寬比)
238
+ aspect_ratio = image.width / image.height
239
+
240
+ # 根據特徵綜合判斷
241
+ if texture > 10 and color_variety > 30 and 0.5 < aspect_ratio < 2:
242
+ return True
243
+ return False
244
+
245
  def merge_overlapping_boxes(boxes, overlap_threshold):
246
  merged = []
247
  while boxes:
 
376
  explanations.append(dog_explanation)
377
  buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
378
  else:
379
+ explanations.append(f"{i+1} The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
380
 
381
 
382
  final_explanation = "\n\n".join(explanations)