DawnC commited on
Commit
a4a7490
·
1 Parent(s): e498926

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +71 -86
scoring_calculation_system.py CHANGED
@@ -601,58 +601,67 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
601
 
602
 
603
  def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
604
- # 基礎分數矩陣
605
  base_scores = {
606
  "High": {
607
- "beginner": 0.3, # 高難度品種對新手較難
608
- "intermediate": 0.6,
609
- "advanced": 0.8 # 即使是高手也要留有調整空間
610
  },
611
  "Moderate": {
612
- "beginner": 0.5,
613
- "intermediate": 0.7,
614
- "advanced": 0.85
615
  },
616
  "Low": {
617
- "beginner": 0.7,
618
- "intermediate": 0.8,
619
- "advanced": 0.9
620
  }
621
  }
622
 
 
623
  base_score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
624
 
625
- # 根據經驗等級有不同的特徵評估標準
626
- trait_scores = {
627
- "beginner": {
628
- 'positive': {'friendly': 0.1, 'gentle': 0.1, 'patient': 0.08},
629
- 'negative': {'aggressive': -0.2, 'stubborn': -0.15, 'dominant': -0.15}
630
- },
631
- "intermediate": {
632
- 'positive': {'intelligent': 0.08, 'trainable': 0.08, 'adaptable': 0.06},
633
- 'negative': {'aggressive': -0.15, 'stubborn': -0.1, 'dominant': -0.1}
634
- },
635
- "advanced": {
636
- 'positive': {'intelligent': 0.06, 'independent': 0.06, 'protective': 0.05},
637
- 'negative': {'aggressive': -0.1, 'nervous': -0.08, 'unpredictable': -0.08}
638
- }
639
  }
640
 
641
- temperament_lower = temperament.lower()
642
- current_traits = trait_scores[user_experience]
643
 
644
- # 計算特徵調整
645
- trait_adjustment = 0
646
- for trait, value in current_traits['positive'].items():
647
- if trait in temperament_lower:
648
- trait_adjustment += value
649
-
650
- for trait, value in current_traits['negative'].items():
651
- if trait in temperament_lower:
652
- trait_adjustment += value
 
 
 
 
 
 
 
 
653
 
654
- final_score = max(0.2, min(0.95, base_score + trait_adjustment))
655
- return final_score
 
 
 
656
 
657
 
658
  def calculate_health_score(breed_name: str) -> float:
@@ -867,68 +876,44 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
867
  'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
868
  }
869
 
870
- # 2. 計算品種加分
871
- breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
872
-
873
- # 3. 如果有孩童,計算安全分數,但不直接修改基礎分數
874
  if user_prefs.has_children:
875
- family_safety = calculate_family_safety_score(breed_info, user_prefs.children_age)
876
-
877
- # 創建安全性調整係數
878
- safety_adjustments = {
879
- 'toddler': 0.6, # 對幼童最嚴格
880
- 'school_age': 0.75, # 學齡兒童較寬鬆
881
- 'teenager': 0.85 # 青少年最寬鬆
882
- }
883
-
884
- # 調整權重而不是直接修改分數
885
- safety_weight = safety_adjustments[user_prefs.children_age]
886
-
887
- # 修改最終加權計算方式
888
  weights = {
889
- 'space': 0.22,
890
- 'exercise': 0.15,
891
- 'grooming': 0.10,
892
- 'experience': 0.18,
893
- 'health': 0.10,
894
- 'noise': 0.05
 
895
  }
896
-
897
- # 加入安全性權重
898
- final_score = (
899
- sum(score * weights[category] for category, score in scores.items()) * safety_weight +
900
- family_safety * (1 - safety_weight)
901
- )
902
-
903
- # 品種加分也要考慮安全性
904
- breed_bonus *= family_safety
905
-
906
  else:
907
- # 原有的權重
908
  weights = {
909
- 'space': 0.28,
910
- 'exercise': 0.18,
911
- 'grooming': 0.12,
912
- 'experience': 0.22,
913
- 'health': 0.12,
914
- 'noise': 0.08
915
  }
916
- final_score = sum(score * weights[category] for category, score in scores.items())
917
 
918
- # 4. 應用品種加分
919
- final_score *= (1 + breed_bonus * 0.2)
 
 
 
 
920
 
921
  # 5. 最終分數調整
922
  def amplify_score(score):
923
- adjusted = (score - 0.25) * 1.8
924
- amplified = pow(adjusted, 2.2) / 3.5 + score
925
- if amplified > 0.85:
926
- amplified = 0.85 + (amplified - 0.85) * 0.6
927
  return max(0.45, min(0.95, amplified))
928
 
929
  final_score = amplify_score(final_score)
930
-
931
- # 6. 回傳結果
932
  scores = {k: round(v, 4) for k, v in scores.items()}
933
  scores['overall'] = round(final_score, 4)
934
 
 
601
 
602
 
603
  def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
604
+ # 首先建立基礎分數矩陣,確保不同難度和經驗等級有明顯差異
605
  base_scores = {
606
  "High": {
607
+ "beginner": 0.2, # 高難度品種對新手極具挑戰
608
+ "intermediate": 0.5, # 中級玩家有一定掌握能力
609
+ "advanced": 0.7 # 專家也需要謹慎對待
610
  },
611
  "Moderate": {
612
+ "beginner": 0.4,
613
+ "intermediate": 0.65,
614
+ "advanced": 0.8
615
  },
616
  "Low": {
617
+ "beginner": 0.6,
618
+ "intermediate": 0.75,
619
+ "advanced": 0.85
620
  }
621
  }
622
 
623
+ # 獲取基礎分數
624
  base_score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
625
 
626
+ # 品種特性評估
627
+ temperament_lower = temperament.lower()
628
+
629
+ # 計算品種難度係數
630
+ difficulty_traits = {
631
+ 'aggressive': 0.3,
632
+ 'dominant': 0.25,
633
+ 'stubborn': 0.25,
634
+ 'independent': 0.2,
635
+ 'protective': 0.2,
636
+ 'strong-willed': 0.15
 
 
 
637
  }
638
 
639
+ difficulty_score = sum(value for trait, value in difficulty_traits.items()
640
+ if trait in temperament_lower)
641
 
642
+ # 根據經驗等級調整難度的影響
643
+ experience_modifiers = {
644
+ "beginner": 1.2, # 新手受難度影響最大
645
+ "intermediate": 0.8, # 中級玩家受中等影響
646
+ "advanced": 0.5 # 專家受較小影響但仍然存在
647
+ }
648
+
649
+ # 應用經驗調整
650
+ difficulty_impact = difficulty_score * experience_modifiers[user_experience]
651
+ adjusted_score = base_score * (1 - difficulty_impact)
652
+
653
+ # 特殊品種類型的額外調整
654
+ breed_type_penalties = {
655
+ 'terrier': {'beginner': -0.15, 'intermediate': -0.08, 'advanced': -0.04},
656
+ 'working': {'beginner': -0.2, 'intermediate': -0.1, 'advanced': -0.05},
657
+ 'guard': {'beginner': -0.25, 'intermediate': -0.12, 'advanced': -0.06}
658
+ }
659
 
660
+ for breed_type, penalties in breed_type_penalties.items():
661
+ if breed_type in temperament_lower:
662
+ adjusted_score += penalties[user_experience]
663
+
664
+ return max(0.2, min(0.95, adjusted_score))
665
 
666
 
667
  def calculate_health_score(breed_name: str) -> float:
 
876
  'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
877
  }
878
 
879
+ # 2. 計算品種加分
 
 
 
880
  if user_prefs.has_children:
881
+ scores['family_safety'] = calculate_family_safety_score(breed_info, user_prefs.children_age)
 
 
 
 
 
 
 
 
 
 
 
 
882
  weights = {
883
+ 'space': 0.22,
884
+ 'exercise': 0.15,
885
+ 'grooming': 0.10,
886
+ 'experience': 0.20,
887
+ 'health': 0.10,
888
+ 'noise': 0.08,
889
+ 'family_safety': 0.15
890
  }
 
 
 
 
 
 
 
 
 
 
891
  else:
 
892
  weights = {
893
+ 'space': 0.28,
894
+ 'exercise': 0.18,
895
+ 'grooming': 0.12,
896
+ 'experience': 0.22,
897
+ 'health': 0.12,
898
+ 'noise': 0.08
899
  }
 
900
 
901
+ # 3. 計算加權分數
902
+ weighted_score = sum(score * weights[category] for category, score in scores.items())
903
+
904
+ # 4. 加入品種加分影響(限制在合理範圍內)
905
+ breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
906
+ final_score = weighted_score * (1 + breed_bonus * 0.2)
907
 
908
  # 5. 最終分數調整
909
  def amplify_score(score):
910
+ adjusted = (score - 0.3) * 1.6
911
+ amplified = pow(adjusted, 2.5) / 4.0 + score
 
 
912
  return max(0.45, min(0.95, amplified))
913
 
914
  final_score = amplify_score(final_score)
915
+
916
+ # 6. 整理回傳結果
917
  scores = {k: round(v, 4) for k, v in scores.items()}
918
  scores['overall'] = round(final_score, 4)
919