DawnC commited on
Commit
da003cc
1 Parent(s): 387ed22

Upload 3 files

Browse files
Files changed (3) hide show
  1. CovNextV2Base_best_model.pth +3 -0
  2. app.py +523 -0
  3. model_architecture.py +315 -0
CovNextV2Base_best_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3d10b865b83d0fcda631e31e1aac7b2b51f43dc139674706611bd5c1b68afd8
3
+ size 413251664
app.py ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import gradio as gr
6
+ import time
7
+ import timm
8
+ from torchvision.ops import nms, box_iou
9
+ import torch.nn.functional as F
10
+ from torchvision import transforms
11
+ from PIL import Image, ImageDraw, ImageFont, ImageFilter
12
+ from breed_health_info import breed_health_info
13
+ from breed_noise_info import breed_noise_info
14
+ from dog_database import get_dog_description
15
+ from scoring_calculation_system import UserPreferences
16
+ from recommendation_html_format import format_recommendation_html, get_breed_recommendations
17
+ from history_manager import UserHistoryManager
18
+ from search_history import create_history_tab, create_history_component
19
+ from styles import get_css_styles
20
+ from breed_detection import create_detection_tab
21
+ from breed_comparison import create_comparison_tab
22
+ from breed_recommendation import create_recommendation_tab
23
+ from html_templates import (
24
+ format_description_html,
25
+ format_single_dog_result,
26
+ format_multiple_breeds_result,
27
+ format_error_message,
28
+ format_warning_html,
29
+ format_multi_dog_container,
30
+ format_breed_details_html,
31
+ get_color_scheme,
32
+ get_akc_breeds_link
33
+ )
34
+ from model_architecture import BaseModel, dog_breeds
35
+ from urllib.parse import quote
36
+ from ultralytics import YOLO
37
+ import asyncio
38
+ import traceback
39
+
40
+ history_manager = UserHistoryManager()
41
+
42
+ class ModelManager:
43
+ """
44
+ Singleton class for managing model instances and device allocation
45
+ specifically designed for Hugging Face Spaces deployment.
46
+ """
47
+ _instance = None
48
+ _initialized = False
49
+ _yolo_model = None
50
+ _breed_model = None
51
+ _device = None
52
+
53
+ def __new__(cls):
54
+ if cls._instance is None:
55
+ cls._instance = super().__new__(cls)
56
+ return cls._instance
57
+
58
+ def __init__(self):
59
+ if not ModelManager._initialized:
60
+ self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
61
+ ModelManager._initialized = True
62
+
63
+ @property
64
+ def device(self):
65
+ if self._device is None:
66
+ self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
67
+ return self._device
68
+
69
+ @property
70
+ def yolo_model(self):
71
+ if self._yolo_model is None:
72
+ self._yolo_model = YOLO('yolov8x.pt')
73
+ return self._yolo_model
74
+
75
+ @property
76
+ def breed_model(self):
77
+ if self._breed_model is None:
78
+ self._breed_model = BaseModel(
79
+ num_classes=len(dog_breeds),
80
+ device=self.device
81
+ ).to(self.device)
82
+
83
+ checkpoint = torch.load(
84
+ 'ConvNextV2Base_best_model.pth',
85
+ map_location=self.device
86
+ )
87
+ self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
88
+ self._breed_model.eval()
89
+ return self._breed_model
90
+
91
+ # Initialize model manager
92
+ model_manager = ModelManager()
93
+
94
+ def preprocess_image(image):
95
+ """Preprocesses images for model input"""
96
+ if isinstance(image, np.ndarray):
97
+ image = Image.fromarray(image)
98
+
99
+ transform = transforms.Compose([
100
+ transforms.Resize((224, 224)),
101
+ transforms.ToTensor(),
102
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
103
+ ])
104
+
105
+ return transform(image).unsqueeze(0)
106
+
107
+ @spaces.GPU
108
+ def predict_single_dog(image):
109
+ """Predicts dog breed for a single image"""
110
+ image_tensor = preprocess_image(image).to(model_manager.device)
111
+
112
+ with torch.no_grad():
113
+ logits = model_manager.breed_model(image_tensor)[0]
114
+ probs = F.softmax(logits, dim=1)
115
+
116
+ top5_prob, top5_idx = torch.topk(probs, k=5)
117
+ breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
118
+ probabilities = [prob.item() for prob in top5_prob[0]]
119
+
120
+ sum_probs = sum(probabilities[:3])
121
+ relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
122
+
123
+ return probabilities[0], breeds[:3], relative_probs
124
+
125
+ def enhanced_preprocess(image, is_standing=False, has_overlap=False):
126
+ """
127
+ Enhanced image preprocessing function with special handling for different poses
128
+ and overlapping cases.
129
+ """
130
+ target_size = 224
131
+ w, h = image.size
132
+
133
+ if is_standing:
134
+ if h > w * 1.5:
135
+ new_h = target_size
136
+ new_w = min(target_size, int(w * (target_size / h)))
137
+ new_w = max(new_w, int(target_size * 0.6))
138
+ elif has_overlap:
139
+ scale = min(target_size/w, target_size/h) * 0.95
140
+ new_w = int(w * scale)
141
+ new_h = int(h * scale)
142
+ else:
143
+ scale = min(target_size/w, target_size/h)
144
+ new_w = int(w * scale)
145
+ new_h = int(h * scale)
146
+
147
+ resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
148
+ final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
149
+ paste_x = (target_size - new_w) // 2
150
+ paste_y = (target_size - new_h) // 2
151
+ final_image.paste(resized, (paste_x, paste_y))
152
+
153
+ return final_image
154
+
155
+ @spaces.GPU
156
+ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
157
+ """
158
+ Enhanced multiple dog detection with improved bounding box handling and
159
+ intelligent boundary adjustments.
160
+ """
161
+ results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
162
+ img_width, img_height = image.size
163
+ detected_boxes = []
164
+
165
+ # Phase 1: Initial detection and processing
166
+ for box in results.boxes:
167
+ if box.cls.item() == 16: # Dog class
168
+ xyxy = box.xyxy[0].tolist()
169
+ confidence = box.conf.item()
170
+ x1, y1, x2, y2 = map(int, xyxy)
171
+ w = x2 - x1
172
+ h = y2 - y1
173
+
174
+ detected_boxes.append({
175
+ 'coords': [x1, y1, x2, y2],
176
+ 'width': w,
177
+ 'height': h,
178
+ 'center_x': (x1 + x2) / 2,
179
+ 'center_y': (y1 + y2) / 2,
180
+ 'area': w * h,
181
+ 'confidence': confidence,
182
+ 'aspect_ratio': w / h if h != 0 else 1
183
+ })
184
+
185
+ if not detected_boxes:
186
+ return [(image, 1.0, [0, 0, img_width, img_height], False)]
187
+
188
+ # Phase 2: Analysis of detection relationships
189
+ avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
190
+ avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
191
+ avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
192
+
193
+ def calculate_iou(box1, box2):
194
+ x1 = max(box1['coords'][0], box2['coords'][0])
195
+ y1 = max(box1['coords'][1], box2['coords'][1])
196
+ x2 = min(box1['coords'][2], box2['coords'][2])
197
+ y2 = min(box1['coords'][3], box2['coords'][3])
198
+
199
+ if x2 <= x1 or y2 <= y1:
200
+ return 0.0
201
+
202
+ intersection = (x2 - x1) * (y2 - y1)
203
+ area1 = box1['area']
204
+ area2 = box2['area']
205
+ return intersection / (area1 + area2 - intersection)
206
+
207
+ # Phase 3: Processing each detection
208
+ processed_boxes = []
209
+ overlap_threshold = 0.2
210
+
211
+ for i, box_info in enumerate(detected_boxes):
212
+ x1, y1, x2, y2 = box_info['coords']
213
+ w = box_info['width']
214
+ h = box_info['height']
215
+ center_x = box_info['center_x']
216
+ center_y = box_info['center_y']
217
+
218
+ # Check for overlaps
219
+ has_overlap = False
220
+ for j, other_box in enumerate(detected_boxes):
221
+ if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
222
+ has_overlap = True
223
+ break
224
+
225
+ # Adjust expansion strategy
226
+ base_expansion = 0.03
227
+ max_expansion = 0.05
228
+
229
+ is_standing = h > 1.5 * w
230
+ is_sitting = 0.8 <= h/w <= 1.2
231
+ is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
232
+
233
+ if has_overlap:
234
+ h_expansion = w_expansion = base_expansion * 0.8
235
+ else:
236
+ if is_standing:
237
+ h_expansion = min(base_expansion * 1.2, max_expansion)
238
+ w_expansion = base_expansion
239
+ elif is_sitting:
240
+ h_expansion = w_expansion = base_expansion
241
+ else:
242
+ h_expansion = w_expansion = base_expansion * 0.9
243
+
244
+ # Position compensation
245
+ if center_x < img_width * 0.2 or center_x > img_width * 0.8:
246
+ w_expansion *= 0.9
247
+
248
+ if is_abnormal_size:
249
+ h_expansion *= 0.8
250
+ w_expansion *= 0.8
251
+
252
+ # Calculate final bounding box
253
+ expansion_w = w * w_expansion
254
+ expansion_h = h * h_expansion
255
+
256
+ new_x1 = max(0, center_x - (w + expansion_w)/2)
257
+ new_y1 = max(0, center_y - (h + expansion_h)/2)
258
+ new_x2 = min(img_width, center_x + (w + expansion_w)/2)
259
+ new_y2 = min(img_height, center_y + (h + expansion_h)/2)
260
+
261
+ # Crop and process image
262
+ cropped_image = image.crop((int(new_x1), int(new_y1),
263
+ int(new_x2), int(new_y2)))
264
+
265
+ processed_image = enhanced_preprocess(
266
+ cropped_image,
267
+ is_standing=is_standing,
268
+ has_overlap=has_overlap
269
+ )
270
+
271
+ processed_boxes.append((
272
+ processed_image,
273
+ box_info['confidence'],
274
+ [new_x1, new_y1, new_x2, new_y2],
275
+ True
276
+ ))
277
+
278
+ return processed_boxes
279
+
280
+ @spaces.GPU
281
+ def predict(image):
282
+ """
283
+ Main prediction function that handles both single and multiple dog detection.
284
+ Args:
285
+ image: PIL Image or numpy array
286
+ Returns:
287
+ tuple: (html_output, annotated_image, initial_state)
288
+ """
289
+ if image is None:
290
+ return format_hint_html("Please upload an image to start."), None, None
291
+
292
+ try:
293
+ if isinstance(image, np.ndarray):
294
+ image = Image.fromarray(image)
295
+
296
+ # 檢測圖片中的物體
297
+ dogs = detect_multiple_dogs(image)
298
+ color_scheme = get_color_scheme(len(dogs) == 1)
299
+
300
+ # 準備標註
301
+ annotated_image = image.copy()
302
+ draw = ImageDraw.Draw(annotated_image)
303
+
304
+ try:
305
+ font = ImageFont.truetype("arial.ttf", 24)
306
+ except:
307
+ font = ImageFont.load_default()
308
+
309
+ dogs_info = ""
310
+
311
+ # 處理每個檢測到的物體
312
+ for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
313
+ print(f"Predict processing - Object {i+1}:")
314
+ print(f" Is dog: {is_dog}")
315
+ print(f" Detection confidence: {detection_confidence:.4f}")
316
+
317
+ # 如果是狗且進行品種預測,在這裡也加入打印語句
318
+ if is_dog:
319
+ top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
320
+ print(f" Breed prediction - Top probability: {top1_prob:.4f}")
321
+ print(f" Top breeds: {topk_breeds[:3]}")
322
+ color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
323
+
324
+ # 繪製框和標籤
325
+ draw.rectangle(box, outline=color, width=4)
326
+ label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
327
+ label_bbox = draw.textbbox((0, 0), label, font=font)
328
+ label_width = label_bbox[2] - label_bbox[0]
329
+ label_height = label_bbox[3] - label_bbox[1]
330
+
331
+ # 繪製標籤背景和文字
332
+ label_x = box[0] + 5
333
+ label_y = box[1] + 5
334
+ draw.rectangle(
335
+ [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
336
+ fill='white',
337
+ outline=color,
338
+ width=2
339
+ )
340
+ draw.text((label_x, label_y), label, fill=color, font=font)
341
+
342
+ try:
343
+ # 首先檢查是否為狗
344
+ if not is_dog:
345
+ dogs_info += format_not_dog_message(color, i+1)
346
+ continue
347
+
348
+ # 如果是狗,進行品種預測
349
+ top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
350
+ combined_confidence = detection_confidence * top1_prob
351
+
352
+ # 根據信心度決定輸出格式
353
+ if combined_confidence < 0.15:
354
+ dogs_info += format_unknown_breed_message(color, i+1)
355
+ elif top1_prob >= 0.4:
356
+ breed = topk_breeds[0]
357
+ description = get_dog_description(breed)
358
+ if description is None:
359
+ description = {
360
+ "Name": breed,
361
+ "Size": "Unknown",
362
+ "Exercise Needs": "Unknown",
363
+ "Grooming Needs": "Unknown",
364
+ "Care Level": "Unknown",
365
+ "Good with Children": "Unknown",
366
+ "Description": f"Identified as {breed.replace('_', ' ')}"
367
+ }
368
+ dogs_info += format_single_dog_result(breed, description, color)
369
+ else:
370
+ dogs_info += format_multiple_breeds_result(
371
+ topk_breeds,
372
+ relative_probs,
373
+ color,
374
+ i+1,
375
+ lambda breed: get_dog_description(breed) or {
376
+ "Name": breed,
377
+ "Size": "Unknown",
378
+ "Exercise Needs": "Unknown",
379
+ "Grooming Needs": "Unknown",
380
+ "Care Level": "Unknown",
381
+ "Good with Children": "Unknown",
382
+ "Description": f"Identified as {breed.replace('_', ' ')}"
383
+ }
384
+ )
385
+ except Exception as e:
386
+ print(f"Error formatting results for dog {i+1}: {str(e)}")
387
+ dogs_info += format_unknown_breed_message(color, i+1)
388
+
389
+ # 包裝最終的HTML輸出
390
+ html_output = format_multi_dog_container(dogs_info)
391
+
392
+ # 準備初始狀態
393
+ initial_state = {
394
+ "dogs_info": dogs_info,
395
+ "image": annotated_image,
396
+ "is_multi_dog": len(dogs) > 1,
397
+ "html_output": html_output
398
+ }
399
+
400
+ return html_output, annotated_image, initial_state
401
+
402
+ except Exception as e:
403
+ error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
404
+ print(error_msg)
405
+ return format_hint_html(error_msg), None, None
406
+
407
+
408
+ def show_details_html(choice, previous_output, initial_state):
409
+ """
410
+ Generate detailed HTML view for a selected breed.
411
+
412
+ Args:
413
+ choice: str, Selected breed option
414
+ previous_output: str, Previous HTML output
415
+ initial_state: dict, Current state information
416
+
417
+ Returns:
418
+ tuple: (html_output, gradio_update, updated_state)
419
+ """
420
+ if not choice:
421
+ return previous_output, gr.update(visible=True), initial_state
422
+
423
+ try:
424
+ breed = choice.split("More about ")[-1]
425
+ description = get_dog_description(breed)
426
+ html_output = format_breed_details_html(description, breed)
427
+
428
+ # Update state
429
+ initial_state["current_description"] = html_output
430
+ initial_state["original_buttons"] = initial_state.get("buttons", [])
431
+
432
+ return html_output, gr.update(visible=True), initial_state
433
+
434
+ except Exception as e:
435
+ error_msg = f"An error occurred while showing details: {e}"
436
+ print(error_msg)
437
+ return format_hint_html(error_msg), gr.update(visible=True), initial_state
438
+
439
+ def main():
440
+ with gr.Blocks(css=get_css_styles()) as iface:
441
+ # Header HTML
442
+
443
+ gr.HTML("""
444
+ <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
445
+ <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
446
+ 🐾 PawMatch AI
447
+ </h1>
448
+ <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
449
+ Your Smart Dog Breed Guide
450
+ </h2>
451
+ <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
452
+ <p style='color: #718096; font-size: 0.9em;'>
453
+ Powered by AI • Breed Recognition • Smart Matching • Companion Guide
454
+ </p>
455
+ </header>
456
+ """)
457
+
458
+ # 先創建歷史組件實例(但不創建標籤頁)
459
+ history_component = create_history_component()
460
+
461
+ with gr.Tabs():
462
+ # 1. 品種檢測標籤頁
463
+ example_images = [
464
+ 'Border_Collie.jpg',
465
+ 'Golden_Retriever.jpeg',
466
+ 'Saint_Bernard.jpeg',
467
+ 'Samoyed.jpeg',
468
+ 'French_Bulldog.jpeg'
469
+ ]
470
+ detection_components = create_detection_tab(predict, example_images)
471
+
472
+ # 2. 品種比較標籤頁
473
+ comparison_components = create_comparison_tab(
474
+ dog_breeds=dog_breeds,
475
+ get_dog_description=get_dog_description,
476
+ breed_health_info=breed_health_info,
477
+ breed_noise_info=breed_noise_info
478
+ )
479
+
480
+ # 3. 品種推薦標籤頁
481
+ recommendation_components = create_recommendation_tab(
482
+ UserPreferences=UserPreferences,
483
+ get_breed_recommendations=get_breed_recommendations,
484
+ format_recommendation_html=format_recommendation_html,
485
+ history_component=history_component
486
+ )
487
+
488
+
489
+ # 4. 最後創建歷史記錄標籤頁
490
+ create_history_tab(history_component)
491
+
492
+ # Footer
493
+ gr.HTML('''
494
+ <div style="
495
+ display: flex;
496
+ align-items: center;
497
+ justify-content: center;
498
+ gap: 20px;
499
+ padding: 20px 0;
500
+ ">
501
+ <p style="
502
+ font-family: 'Arial', sans-serif;
503
+ font-size: 14px;
504
+ font-weight: 500;
505
+ letter-spacing: 2px;
506
+ background: linear-gradient(90deg, #555, #007ACC);
507
+ -webkit-background-clip: text;
508
+ -webkit-text-fill-color: transparent;
509
+ margin: 0;
510
+ text-transform: uppercase;
511
+ display: inline-block;
512
+ ">EXPLORE THE CODE →</p>
513
+ <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
514
+ <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
515
+ </a>
516
+ </div>
517
+ ''')
518
+
519
+ return iface
520
+
521
+ if __name__ == "__main__":
522
+ iface = main()
523
+ iface.launch()
model_architecture.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import timm
6
+ import numpy as np
7
+
8
+ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
9
+ "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
10
+ "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
11
+ "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
12
+ "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
13
+ "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
14
+ "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
15
+ "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
16
+ "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
17
+ "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
18
+ "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
19
+ "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
20
+ "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
21
+ "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
22
+ "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
23
+ "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
24
+ "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
25
+ "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
26
+ "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
27
+ "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
28
+ "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
29
+ "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
30
+ "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
31
+ "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
32
+ "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
33
+ "Wire-Haired_Fox_Terrier"]
34
+
35
+
36
+ class MorphologicalFeatureExtractor(nn.Module):
37
+
38
+ def __init__(self, in_features):
39
+ super().__init__()
40
+
41
+ # 基礎特徵維度設置
42
+ self.reduced_dim = in_features // 4
43
+ self.spatial_size = max(7, int(np.sqrt(self.reduced_dim // 64)))
44
+
45
+ # 1. 特徵空間轉換器:將一維特徵轉換為二維空間表示
46
+ self.dimension_transformer = nn.Sequential(
47
+ nn.Linear(in_features, self.spatial_size * self.spatial_size * 64),
48
+ nn.LayerNorm(self.spatial_size * self.spatial_size * 64),
49
+ nn.ReLU()
50
+ )
51
+
52
+ # 2. 形態特徵分析器:分析具體的形態特徵
53
+ self.morphological_analyzers = nn.ModuleDict({
54
+ # 體型分析器:分析整體比例和大小
55
+ 'body_proportion': nn.Sequential(
56
+ # 使用大卷積核捕捉整體體型特徵
57
+ nn.Conv2d(64, 128, kernel_size=7, padding=3),
58
+ nn.BatchNorm2d(128),
59
+ nn.ReLU(),
60
+ # 使用較小的卷積核精煉特徵
61
+ nn.Conv2d(128, 128, kernel_size=3, padding=1),
62
+ nn.BatchNorm2d(128),
63
+ nn.ReLU()
64
+ ),
65
+
66
+ # 頭部特徵分析器:關注耳朵、臉部等
67
+ 'head_features': nn.Sequential(
68
+ # 中等大小的卷積核,適合分析頭部結構
69
+ nn.Conv2d(64, 128, kernel_size=5, padding=2),
70
+ nn.BatchNorm2d(128),
71
+ nn.ReLU(),
72
+ # 小卷積核捕捉細節
73
+ nn.Conv2d(128, 128, kernel_size=3, padding=1),
74
+ nn.BatchNorm2d(128),
75
+ nn.ReLU()
76
+ ),
77
+
78
+ # 尾部特徵分析器
79
+ 'tail_features': nn.Sequential(
80
+ nn.Conv2d(64, 128, kernel_size=5, padding=2),
81
+ nn.BatchNorm2d(128),
82
+ nn.ReLU(),
83
+ nn.Conv2d(128, 128, kernel_size=3, padding=1),
84
+ nn.BatchNorm2d(128),
85
+ nn.ReLU()
86
+ ),
87
+
88
+ # 毛髮特徵分析器:分析毛髮長度、質地等
89
+ 'fur_features': nn.Sequential(
90
+ # 使用多個小卷積核捕捉毛髮紋理
91
+ nn.Conv2d(64, 128, kernel_size=3, padding=1),
92
+ nn.BatchNorm2d(128),
93
+ nn.ReLU(),
94
+ nn.Conv2d(128, 128, kernel_size=3, padding=1),
95
+ nn.BatchNorm2d(128),
96
+ nn.ReLU()
97
+ ),
98
+
99
+ # 顏色特徵分析器:分析顏色分佈
100
+ 'color_pattern': nn.Sequential(
101
+ # 第一層:捕捉基本顏色分布
102
+ nn.Conv2d(64, 128, kernel_size=3, padding=1),
103
+ nn.BatchNorm2d(128),
104
+ nn.ReLU(),
105
+
106
+ # 第二層:分析顏色模式和花紋
107
+ nn.Conv2d(128, 128, kernel_size=3, padding=1),
108
+ nn.BatchNorm2d(128),
109
+ nn.ReLU(),
110
+
111
+ # 第三層:整合顏色信息
112
+ nn.Conv2d(128, 128, kernel_size=1),
113
+ nn.BatchNorm2d(128),
114
+ nn.ReLU()
115
+ )
116
+ })
117
+
118
+ # 3. 特徵注意力機制:動態關注不同特徵
119
+ self.feature_attention = nn.MultiheadAttention(
120
+ embed_dim=128,
121
+ num_heads=8,
122
+ dropout=0.1,
123
+ batch_first=True
124
+ )
125
+
126
+ # 4. 特徵關係分析器:分析不同特徵之間的關係
127
+ self.relation_analyzer = nn.Sequential(
128
+ nn.Linear(128 * 5, 256), # 4個特徵分析器的輸出
129
+ nn.LayerNorm(256),
130
+ nn.ReLU(),
131
+ nn.Linear(256, 128),
132
+ nn.LayerNorm(128),
133
+ nn.ReLU()
134
+ )
135
+
136
+ # 5. 特徵整合器:將所有特徵智能地組合在一起
137
+ self.feature_integrator = nn.Sequential(
138
+ nn.Linear(128 * 6, in_features), # 5個原始特徵 + 1個關係特徵
139
+ nn.LayerNorm(in_features),
140
+ nn.ReLU()
141
+ )
142
+
143
+ def forward(self, x):
144
+ batch_size = x.size(0)
145
+
146
+ # 1. 將特徵轉換為空間形式
147
+ spatial_features = self.dimension_transformer(x).view(
148
+ batch_size, 64, self.spatial_size, self.spatial_size
149
+ )
150
+
151
+ # 2. 分析各種形態特徵
152
+ morphological_features = {}
153
+ for name, analyzer in self.morphological_analyzers.items():
154
+ # 提取特定形態特徵
155
+ features = analyzer(spatial_features)
156
+ # 使用自適應池化統一特徵大小
157
+ pooled_features = F.adaptive_avg_pool2d(features, (1, 1))
158
+ # 重塑特徵為向量形式
159
+ morphological_features[name] = pooled_features.view(batch_size, -1)
160
+
161
+ # 3. 特徵注意力處理
162
+ # 將所有特徵堆疊成序列
163
+ stacked_features = torch.stack(list(morphological_features.values()), dim=1)
164
+ # 應用注意力機制
165
+ attended_features, _ = self.feature_attention(
166
+ stacked_features, stacked_features, stacked_features
167
+ )
168
+
169
+ # 4. 分析特徵之間的關係
170
+ # 將所有特徵連接起來
171
+ combined_features = torch.cat(list(morphological_features.values()), dim=1)
172
+ # 提取特徵間的關係
173
+ relation_features = self.relation_analyzer(combined_features)
174
+
175
+ # 5. 特徵整合
176
+ # 將原始特徵和關係特徵結合
177
+ final_features = torch.cat([
178
+ *morphological_features.values(),
179
+ relation_features
180
+ ], dim=1)
181
+
182
+ # 6. 最終整合
183
+ integrated_features = self.feature_integrator(final_features)
184
+
185
+ # 添加殘差連接
186
+ return integrated_features + x
187
+
188
+
189
+ class MultiHeadAttention(nn.Module):
190
+
191
+ def __init__(self, in_dim, num_heads=8):
192
+ """
193
+ Initializes the MultiHeadAttention module.
194
+ Args:
195
+ in_dim (int): Dimension of the input features.
196
+ num_heads (int): Number of attention heads. Defaults to 8.
197
+ """
198
+ super().__init__()
199
+ self.num_heads = num_heads
200
+ self.head_dim = max(1, in_dim // num_heads)
201
+ self.scaled_dim = self.head_dim * num_heads
202
+ self.fc_in = nn.Linear(in_dim, self.scaled_dim)
203
+ self.query = nn.Linear(self.scaled_dim, self.scaled_dim) # Query projection
204
+ self.key = nn.Linear(self.scaled_dim, self.scaled_dim) # Key projection
205
+ self.value = nn.Linear(self.scaled_dim, self.scaled_dim) # Value projection
206
+ self.fc_out = nn.Linear(self.scaled_dim, in_dim) # Linear layer to project output back to in_dim
207
+
208
+ def forward(self, x):
209
+ """
210
+ Forward pass for multi-head attention mechanism.
211
+ Args:
212
+ x (Tensor): Input tensor of shape (batch_size, input_dim).
213
+ x 是 (N,D), N:批次大小, D:輸入特徵維度
214
+ Returns:
215
+ Tensor: Output tensor after applying attention mechanism.
216
+ """
217
+ N = x.shape[0] # Batch size
218
+ x = self.fc_in(x) # Project input to scaled_dim
219
+ q = self.query(x).view(N, self.num_heads, self.head_dim) # Compute queries
220
+ k = self.key(x).view(N, self.num_heads, self.head_dim) # Compute keys
221
+ v = self.value(x).view(N, self.num_heads, self.head_dim) # Compute values
222
+
223
+ # Calculate attention scores
224
+ energy = torch.einsum("nqd,nkd->nqk", [q, k])
225
+ attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2) # Apply softmax with scaling
226
+
227
+ # Compute weighted sum of values based on attention scores
228
+ out = torch.einsum("nqk,nvd->nqd", [attention, v])
229
+ out = out.reshape(N, self.scaled_dim) # Concatenate all heads
230
+ out = self.fc_out(out) # Project back to original input dimension
231
+ return out
232
+
233
+
234
+ class BaseModel(nn.Module):
235
+
236
+ def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
237
+ super().__init__()
238
+ self.device = device
239
+
240
+ # 1. Initialize backbone
241
+ self.backbone = timm.create_model(
242
+ 'convnextv2_base',
243
+ pretrained=True,
244
+ num_classes=0
245
+ )
246
+
247
+ # 2. 使用測試數據來確定實際的特徵維度
248
+ with torch.no_grad():
249
+ dummy_input = torch.randn(1, 3, 224, 224)
250
+ features = self.backbone(dummy_input)
251
+
252
+ if len(features.shape) > 2:
253
+ features = features.mean([-2, -1])
254
+
255
+ self.feature_dim = features.shape[1]
256
+
257
+ print(f"Feature Dimension from V2 backbone: {self.feature_dim}")
258
+
259
+ # 3. Setup multi-head attention layer
260
+ self.num_heads = max(1, min(8, self.feature_dim // 64))
261
+ self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
262
+
263
+ # 4. Setup classifier
264
+ self.classifier = nn.Sequential(
265
+ nn.LayerNorm(self.feature_dim),
266
+ nn.Dropout(0.3),
267
+ nn.Linear(self.feature_dim, num_classes)
268
+ )
269
+
270
+ self.morphological_extractor = MorphologicalFeatureExtractor(
271
+ in_features=self.feature_dim
272
+ )
273
+
274
+ self.feature_fusion = nn.Sequential(
275
+ nn.Linear(self.feature_dim * 3, self.feature_dim),
276
+ nn.LayerNorm(self.feature_dim),
277
+ nn.ReLU(),
278
+ nn.Linear(self.feature_dim, self.feature_dim),
279
+ nn.LayerNorm(self.feature_dim),
280
+ nn.ReLU()
281
+ )
282
+
283
+ def forward(self, x):
284
+ """
285
+ Forward propagation process, combining V2's FCCA and multi-head attention mechanism
286
+ Args:
287
+ x (Tensor): Input image tensor of shape [batch_size, channels, height, width]
288
+ Returns:
289
+ Tuple[Tensor, Tensor]: Classification logits and attention features
290
+ """
291
+ x = x.to(self.device)
292
+
293
+ # 1. Extract base features
294
+ features = self.backbone(x)
295
+ if len(features.shape) > 2:
296
+ features = features.mean([-2, -1])
297
+
298
+ # 2. Extract morphological features (including all detail features)
299
+ morphological_features = self.morphological_extractor(features)
300
+
301
+ # 3. Feature fusion (note dimension alignment with new fusion layer)
302
+ combined_features = torch.cat([
303
+ features, # Original features
304
+ morphological_features, # Morphological features
305
+ features * morphological_features # Feature interaction information
306
+ ], dim=1)
307
+ fused_features = self.feature_fusion(combined_features)
308
+
309
+ # 4. Apply attention mechanism
310
+ attended_features = self.attention(fused_features)
311
+
312
+ # 5. Final classifier
313
+ logits = self.classifier(attended_features)
314
+
315
+ return logits, attended_features