Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- CovNextV2Base_best_model.pth +3 -0
- app.py +523 -0
- model_architecture.py +315 -0
CovNextV2Base_best_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3d10b865b83d0fcda631e31e1aac7b2b51f43dc139674706611bd5c1b68afd8
|
3 |
+
size 413251664
|
app.py
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import gradio as gr
|
6 |
+
import time
|
7 |
+
import timm
|
8 |
+
from torchvision.ops import nms, box_iou
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torchvision import transforms
|
11 |
+
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
12 |
+
from breed_health_info import breed_health_info
|
13 |
+
from breed_noise_info import breed_noise_info
|
14 |
+
from dog_database import get_dog_description
|
15 |
+
from scoring_calculation_system import UserPreferences
|
16 |
+
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
17 |
+
from history_manager import UserHistoryManager
|
18 |
+
from search_history import create_history_tab, create_history_component
|
19 |
+
from styles import get_css_styles
|
20 |
+
from breed_detection import create_detection_tab
|
21 |
+
from breed_comparison import create_comparison_tab
|
22 |
+
from breed_recommendation import create_recommendation_tab
|
23 |
+
from html_templates import (
|
24 |
+
format_description_html,
|
25 |
+
format_single_dog_result,
|
26 |
+
format_multiple_breeds_result,
|
27 |
+
format_error_message,
|
28 |
+
format_warning_html,
|
29 |
+
format_multi_dog_container,
|
30 |
+
format_breed_details_html,
|
31 |
+
get_color_scheme,
|
32 |
+
get_akc_breeds_link
|
33 |
+
)
|
34 |
+
from model_architecture import BaseModel, dog_breeds
|
35 |
+
from urllib.parse import quote
|
36 |
+
from ultralytics import YOLO
|
37 |
+
import asyncio
|
38 |
+
import traceback
|
39 |
+
|
40 |
+
history_manager = UserHistoryManager()
|
41 |
+
|
42 |
+
class ModelManager:
|
43 |
+
"""
|
44 |
+
Singleton class for managing model instances and device allocation
|
45 |
+
specifically designed for Hugging Face Spaces deployment.
|
46 |
+
"""
|
47 |
+
_instance = None
|
48 |
+
_initialized = False
|
49 |
+
_yolo_model = None
|
50 |
+
_breed_model = None
|
51 |
+
_device = None
|
52 |
+
|
53 |
+
def __new__(cls):
|
54 |
+
if cls._instance is None:
|
55 |
+
cls._instance = super().__new__(cls)
|
56 |
+
return cls._instance
|
57 |
+
|
58 |
+
def __init__(self):
|
59 |
+
if not ModelManager._initialized:
|
60 |
+
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
61 |
+
ModelManager._initialized = True
|
62 |
+
|
63 |
+
@property
|
64 |
+
def device(self):
|
65 |
+
if self._device is None:
|
66 |
+
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
67 |
+
return self._device
|
68 |
+
|
69 |
+
@property
|
70 |
+
def yolo_model(self):
|
71 |
+
if self._yolo_model is None:
|
72 |
+
self._yolo_model = YOLO('yolov8x.pt')
|
73 |
+
return self._yolo_model
|
74 |
+
|
75 |
+
@property
|
76 |
+
def breed_model(self):
|
77 |
+
if self._breed_model is None:
|
78 |
+
self._breed_model = BaseModel(
|
79 |
+
num_classes=len(dog_breeds),
|
80 |
+
device=self.device
|
81 |
+
).to(self.device)
|
82 |
+
|
83 |
+
checkpoint = torch.load(
|
84 |
+
'ConvNextV2Base_best_model.pth',
|
85 |
+
map_location=self.device
|
86 |
+
)
|
87 |
+
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
|
88 |
+
self._breed_model.eval()
|
89 |
+
return self._breed_model
|
90 |
+
|
91 |
+
# Initialize model manager
|
92 |
+
model_manager = ModelManager()
|
93 |
+
|
94 |
+
def preprocess_image(image):
|
95 |
+
"""Preprocesses images for model input"""
|
96 |
+
if isinstance(image, np.ndarray):
|
97 |
+
image = Image.fromarray(image)
|
98 |
+
|
99 |
+
transform = transforms.Compose([
|
100 |
+
transforms.Resize((224, 224)),
|
101 |
+
transforms.ToTensor(),
|
102 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
103 |
+
])
|
104 |
+
|
105 |
+
return transform(image).unsqueeze(0)
|
106 |
+
|
107 |
+
@spaces.GPU
|
108 |
+
def predict_single_dog(image):
|
109 |
+
"""Predicts dog breed for a single image"""
|
110 |
+
image_tensor = preprocess_image(image).to(model_manager.device)
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
logits = model_manager.breed_model(image_tensor)[0]
|
114 |
+
probs = F.softmax(logits, dim=1)
|
115 |
+
|
116 |
+
top5_prob, top5_idx = torch.topk(probs, k=5)
|
117 |
+
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
118 |
+
probabilities = [prob.item() for prob in top5_prob[0]]
|
119 |
+
|
120 |
+
sum_probs = sum(probabilities[:3])
|
121 |
+
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
122 |
+
|
123 |
+
return probabilities[0], breeds[:3], relative_probs
|
124 |
+
|
125 |
+
def enhanced_preprocess(image, is_standing=False, has_overlap=False):
|
126 |
+
"""
|
127 |
+
Enhanced image preprocessing function with special handling for different poses
|
128 |
+
and overlapping cases.
|
129 |
+
"""
|
130 |
+
target_size = 224
|
131 |
+
w, h = image.size
|
132 |
+
|
133 |
+
if is_standing:
|
134 |
+
if h > w * 1.5:
|
135 |
+
new_h = target_size
|
136 |
+
new_w = min(target_size, int(w * (target_size / h)))
|
137 |
+
new_w = max(new_w, int(target_size * 0.6))
|
138 |
+
elif has_overlap:
|
139 |
+
scale = min(target_size/w, target_size/h) * 0.95
|
140 |
+
new_w = int(w * scale)
|
141 |
+
new_h = int(h * scale)
|
142 |
+
else:
|
143 |
+
scale = min(target_size/w, target_size/h)
|
144 |
+
new_w = int(w * scale)
|
145 |
+
new_h = int(h * scale)
|
146 |
+
|
147 |
+
resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
148 |
+
final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
|
149 |
+
paste_x = (target_size - new_w) // 2
|
150 |
+
paste_y = (target_size - new_h) // 2
|
151 |
+
final_image.paste(resized, (paste_x, paste_y))
|
152 |
+
|
153 |
+
return final_image
|
154 |
+
|
155 |
+
@spaces.GPU
|
156 |
+
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
|
157 |
+
"""
|
158 |
+
Enhanced multiple dog detection with improved bounding box handling and
|
159 |
+
intelligent boundary adjustments.
|
160 |
+
"""
|
161 |
+
results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
|
162 |
+
img_width, img_height = image.size
|
163 |
+
detected_boxes = []
|
164 |
+
|
165 |
+
# Phase 1: Initial detection and processing
|
166 |
+
for box in results.boxes:
|
167 |
+
if box.cls.item() == 16: # Dog class
|
168 |
+
xyxy = box.xyxy[0].tolist()
|
169 |
+
confidence = box.conf.item()
|
170 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
171 |
+
w = x2 - x1
|
172 |
+
h = y2 - y1
|
173 |
+
|
174 |
+
detected_boxes.append({
|
175 |
+
'coords': [x1, y1, x2, y2],
|
176 |
+
'width': w,
|
177 |
+
'height': h,
|
178 |
+
'center_x': (x1 + x2) / 2,
|
179 |
+
'center_y': (y1 + y2) / 2,
|
180 |
+
'area': w * h,
|
181 |
+
'confidence': confidence,
|
182 |
+
'aspect_ratio': w / h if h != 0 else 1
|
183 |
+
})
|
184 |
+
|
185 |
+
if not detected_boxes:
|
186 |
+
return [(image, 1.0, [0, 0, img_width, img_height], False)]
|
187 |
+
|
188 |
+
# Phase 2: Analysis of detection relationships
|
189 |
+
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
|
190 |
+
avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
|
191 |
+
avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
|
192 |
+
|
193 |
+
def calculate_iou(box1, box2):
|
194 |
+
x1 = max(box1['coords'][0], box2['coords'][0])
|
195 |
+
y1 = max(box1['coords'][1], box2['coords'][1])
|
196 |
+
x2 = min(box1['coords'][2], box2['coords'][2])
|
197 |
+
y2 = min(box1['coords'][3], box2['coords'][3])
|
198 |
+
|
199 |
+
if x2 <= x1 or y2 <= y1:
|
200 |
+
return 0.0
|
201 |
+
|
202 |
+
intersection = (x2 - x1) * (y2 - y1)
|
203 |
+
area1 = box1['area']
|
204 |
+
area2 = box2['area']
|
205 |
+
return intersection / (area1 + area2 - intersection)
|
206 |
+
|
207 |
+
# Phase 3: Processing each detection
|
208 |
+
processed_boxes = []
|
209 |
+
overlap_threshold = 0.2
|
210 |
+
|
211 |
+
for i, box_info in enumerate(detected_boxes):
|
212 |
+
x1, y1, x2, y2 = box_info['coords']
|
213 |
+
w = box_info['width']
|
214 |
+
h = box_info['height']
|
215 |
+
center_x = box_info['center_x']
|
216 |
+
center_y = box_info['center_y']
|
217 |
+
|
218 |
+
# Check for overlaps
|
219 |
+
has_overlap = False
|
220 |
+
for j, other_box in enumerate(detected_boxes):
|
221 |
+
if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
|
222 |
+
has_overlap = True
|
223 |
+
break
|
224 |
+
|
225 |
+
# Adjust expansion strategy
|
226 |
+
base_expansion = 0.03
|
227 |
+
max_expansion = 0.05
|
228 |
+
|
229 |
+
is_standing = h > 1.5 * w
|
230 |
+
is_sitting = 0.8 <= h/w <= 1.2
|
231 |
+
is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
|
232 |
+
|
233 |
+
if has_overlap:
|
234 |
+
h_expansion = w_expansion = base_expansion * 0.8
|
235 |
+
else:
|
236 |
+
if is_standing:
|
237 |
+
h_expansion = min(base_expansion * 1.2, max_expansion)
|
238 |
+
w_expansion = base_expansion
|
239 |
+
elif is_sitting:
|
240 |
+
h_expansion = w_expansion = base_expansion
|
241 |
+
else:
|
242 |
+
h_expansion = w_expansion = base_expansion * 0.9
|
243 |
+
|
244 |
+
# Position compensation
|
245 |
+
if center_x < img_width * 0.2 or center_x > img_width * 0.8:
|
246 |
+
w_expansion *= 0.9
|
247 |
+
|
248 |
+
if is_abnormal_size:
|
249 |
+
h_expansion *= 0.8
|
250 |
+
w_expansion *= 0.8
|
251 |
+
|
252 |
+
# Calculate final bounding box
|
253 |
+
expansion_w = w * w_expansion
|
254 |
+
expansion_h = h * h_expansion
|
255 |
+
|
256 |
+
new_x1 = max(0, center_x - (w + expansion_w)/2)
|
257 |
+
new_y1 = max(0, center_y - (h + expansion_h)/2)
|
258 |
+
new_x2 = min(img_width, center_x + (w + expansion_w)/2)
|
259 |
+
new_y2 = min(img_height, center_y + (h + expansion_h)/2)
|
260 |
+
|
261 |
+
# Crop and process image
|
262 |
+
cropped_image = image.crop((int(new_x1), int(new_y1),
|
263 |
+
int(new_x2), int(new_y2)))
|
264 |
+
|
265 |
+
processed_image = enhanced_preprocess(
|
266 |
+
cropped_image,
|
267 |
+
is_standing=is_standing,
|
268 |
+
has_overlap=has_overlap
|
269 |
+
)
|
270 |
+
|
271 |
+
processed_boxes.append((
|
272 |
+
processed_image,
|
273 |
+
box_info['confidence'],
|
274 |
+
[new_x1, new_y1, new_x2, new_y2],
|
275 |
+
True
|
276 |
+
))
|
277 |
+
|
278 |
+
return processed_boxes
|
279 |
+
|
280 |
+
@spaces.GPU
|
281 |
+
def predict(image):
|
282 |
+
"""
|
283 |
+
Main prediction function that handles both single and multiple dog detection.
|
284 |
+
Args:
|
285 |
+
image: PIL Image or numpy array
|
286 |
+
Returns:
|
287 |
+
tuple: (html_output, annotated_image, initial_state)
|
288 |
+
"""
|
289 |
+
if image is None:
|
290 |
+
return format_hint_html("Please upload an image to start."), None, None
|
291 |
+
|
292 |
+
try:
|
293 |
+
if isinstance(image, np.ndarray):
|
294 |
+
image = Image.fromarray(image)
|
295 |
+
|
296 |
+
# 檢測圖片中的物體
|
297 |
+
dogs = detect_multiple_dogs(image)
|
298 |
+
color_scheme = get_color_scheme(len(dogs) == 1)
|
299 |
+
|
300 |
+
# 準備標註
|
301 |
+
annotated_image = image.copy()
|
302 |
+
draw = ImageDraw.Draw(annotated_image)
|
303 |
+
|
304 |
+
try:
|
305 |
+
font = ImageFont.truetype("arial.ttf", 24)
|
306 |
+
except:
|
307 |
+
font = ImageFont.load_default()
|
308 |
+
|
309 |
+
dogs_info = ""
|
310 |
+
|
311 |
+
# 處理每個檢測到的物體
|
312 |
+
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
|
313 |
+
print(f"Predict processing - Object {i+1}:")
|
314 |
+
print(f" Is dog: {is_dog}")
|
315 |
+
print(f" Detection confidence: {detection_confidence:.4f}")
|
316 |
+
|
317 |
+
# 如果是狗且進行品種預測,在這裡也加入打印語句
|
318 |
+
if is_dog:
|
319 |
+
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
|
320 |
+
print(f" Breed prediction - Top probability: {top1_prob:.4f}")
|
321 |
+
print(f" Top breeds: {topk_breeds[:3]}")
|
322 |
+
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
|
323 |
+
|
324 |
+
# 繪製框和標籤
|
325 |
+
draw.rectangle(box, outline=color, width=4)
|
326 |
+
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
|
327 |
+
label_bbox = draw.textbbox((0, 0), label, font=font)
|
328 |
+
label_width = label_bbox[2] - label_bbox[0]
|
329 |
+
label_height = label_bbox[3] - label_bbox[1]
|
330 |
+
|
331 |
+
# 繪製標籤背景和文字
|
332 |
+
label_x = box[0] + 5
|
333 |
+
label_y = box[1] + 5
|
334 |
+
draw.rectangle(
|
335 |
+
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
|
336 |
+
fill='white',
|
337 |
+
outline=color,
|
338 |
+
width=2
|
339 |
+
)
|
340 |
+
draw.text((label_x, label_y), label, fill=color, font=font)
|
341 |
+
|
342 |
+
try:
|
343 |
+
# 首先檢查是否為狗
|
344 |
+
if not is_dog:
|
345 |
+
dogs_info += format_not_dog_message(color, i+1)
|
346 |
+
continue
|
347 |
+
|
348 |
+
# 如果是狗,進行品種預測
|
349 |
+
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
|
350 |
+
combined_confidence = detection_confidence * top1_prob
|
351 |
+
|
352 |
+
# 根據信心度決定輸出格式
|
353 |
+
if combined_confidence < 0.15:
|
354 |
+
dogs_info += format_unknown_breed_message(color, i+1)
|
355 |
+
elif top1_prob >= 0.4:
|
356 |
+
breed = topk_breeds[0]
|
357 |
+
description = get_dog_description(breed)
|
358 |
+
if description is None:
|
359 |
+
description = {
|
360 |
+
"Name": breed,
|
361 |
+
"Size": "Unknown",
|
362 |
+
"Exercise Needs": "Unknown",
|
363 |
+
"Grooming Needs": "Unknown",
|
364 |
+
"Care Level": "Unknown",
|
365 |
+
"Good with Children": "Unknown",
|
366 |
+
"Description": f"Identified as {breed.replace('_', ' ')}"
|
367 |
+
}
|
368 |
+
dogs_info += format_single_dog_result(breed, description, color)
|
369 |
+
else:
|
370 |
+
dogs_info += format_multiple_breeds_result(
|
371 |
+
topk_breeds,
|
372 |
+
relative_probs,
|
373 |
+
color,
|
374 |
+
i+1,
|
375 |
+
lambda breed: get_dog_description(breed) or {
|
376 |
+
"Name": breed,
|
377 |
+
"Size": "Unknown",
|
378 |
+
"Exercise Needs": "Unknown",
|
379 |
+
"Grooming Needs": "Unknown",
|
380 |
+
"Care Level": "Unknown",
|
381 |
+
"Good with Children": "Unknown",
|
382 |
+
"Description": f"Identified as {breed.replace('_', ' ')}"
|
383 |
+
}
|
384 |
+
)
|
385 |
+
except Exception as e:
|
386 |
+
print(f"Error formatting results for dog {i+1}: {str(e)}")
|
387 |
+
dogs_info += format_unknown_breed_message(color, i+1)
|
388 |
+
|
389 |
+
# 包裝最終的HTML輸出
|
390 |
+
html_output = format_multi_dog_container(dogs_info)
|
391 |
+
|
392 |
+
# 準備初始狀態
|
393 |
+
initial_state = {
|
394 |
+
"dogs_info": dogs_info,
|
395 |
+
"image": annotated_image,
|
396 |
+
"is_multi_dog": len(dogs) > 1,
|
397 |
+
"html_output": html_output
|
398 |
+
}
|
399 |
+
|
400 |
+
return html_output, annotated_image, initial_state
|
401 |
+
|
402 |
+
except Exception as e:
|
403 |
+
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
404 |
+
print(error_msg)
|
405 |
+
return format_hint_html(error_msg), None, None
|
406 |
+
|
407 |
+
|
408 |
+
def show_details_html(choice, previous_output, initial_state):
|
409 |
+
"""
|
410 |
+
Generate detailed HTML view for a selected breed.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
choice: str, Selected breed option
|
414 |
+
previous_output: str, Previous HTML output
|
415 |
+
initial_state: dict, Current state information
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
tuple: (html_output, gradio_update, updated_state)
|
419 |
+
"""
|
420 |
+
if not choice:
|
421 |
+
return previous_output, gr.update(visible=True), initial_state
|
422 |
+
|
423 |
+
try:
|
424 |
+
breed = choice.split("More about ")[-1]
|
425 |
+
description = get_dog_description(breed)
|
426 |
+
html_output = format_breed_details_html(description, breed)
|
427 |
+
|
428 |
+
# Update state
|
429 |
+
initial_state["current_description"] = html_output
|
430 |
+
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
431 |
+
|
432 |
+
return html_output, gr.update(visible=True), initial_state
|
433 |
+
|
434 |
+
except Exception as e:
|
435 |
+
error_msg = f"An error occurred while showing details: {e}"
|
436 |
+
print(error_msg)
|
437 |
+
return format_hint_html(error_msg), gr.update(visible=True), initial_state
|
438 |
+
|
439 |
+
def main():
|
440 |
+
with gr.Blocks(css=get_css_styles()) as iface:
|
441 |
+
# Header HTML
|
442 |
+
|
443 |
+
gr.HTML("""
|
444 |
+
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
445 |
+
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
446 |
+
🐾 PawMatch AI
|
447 |
+
</h1>
|
448 |
+
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
|
449 |
+
Your Smart Dog Breed Guide
|
450 |
+
</h2>
|
451 |
+
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
|
452 |
+
<p style='color: #718096; font-size: 0.9em;'>
|
453 |
+
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
|
454 |
+
</p>
|
455 |
+
</header>
|
456 |
+
""")
|
457 |
+
|
458 |
+
# 先創建歷史組件實例(但不創建標籤頁)
|
459 |
+
history_component = create_history_component()
|
460 |
+
|
461 |
+
with gr.Tabs():
|
462 |
+
# 1. 品種檢測標籤頁
|
463 |
+
example_images = [
|
464 |
+
'Border_Collie.jpg',
|
465 |
+
'Golden_Retriever.jpeg',
|
466 |
+
'Saint_Bernard.jpeg',
|
467 |
+
'Samoyed.jpeg',
|
468 |
+
'French_Bulldog.jpeg'
|
469 |
+
]
|
470 |
+
detection_components = create_detection_tab(predict, example_images)
|
471 |
+
|
472 |
+
# 2. 品種比較標籤頁
|
473 |
+
comparison_components = create_comparison_tab(
|
474 |
+
dog_breeds=dog_breeds,
|
475 |
+
get_dog_description=get_dog_description,
|
476 |
+
breed_health_info=breed_health_info,
|
477 |
+
breed_noise_info=breed_noise_info
|
478 |
+
)
|
479 |
+
|
480 |
+
# 3. 品種推薦標籤頁
|
481 |
+
recommendation_components = create_recommendation_tab(
|
482 |
+
UserPreferences=UserPreferences,
|
483 |
+
get_breed_recommendations=get_breed_recommendations,
|
484 |
+
format_recommendation_html=format_recommendation_html,
|
485 |
+
history_component=history_component
|
486 |
+
)
|
487 |
+
|
488 |
+
|
489 |
+
# 4. 最後創建歷史記錄標籤頁
|
490 |
+
create_history_tab(history_component)
|
491 |
+
|
492 |
+
# Footer
|
493 |
+
gr.HTML('''
|
494 |
+
<div style="
|
495 |
+
display: flex;
|
496 |
+
align-items: center;
|
497 |
+
justify-content: center;
|
498 |
+
gap: 20px;
|
499 |
+
padding: 20px 0;
|
500 |
+
">
|
501 |
+
<p style="
|
502 |
+
font-family: 'Arial', sans-serif;
|
503 |
+
font-size: 14px;
|
504 |
+
font-weight: 500;
|
505 |
+
letter-spacing: 2px;
|
506 |
+
background: linear-gradient(90deg, #555, #007ACC);
|
507 |
+
-webkit-background-clip: text;
|
508 |
+
-webkit-text-fill-color: transparent;
|
509 |
+
margin: 0;
|
510 |
+
text-transform: uppercase;
|
511 |
+
display: inline-block;
|
512 |
+
">EXPLORE THE CODE →</p>
|
513 |
+
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
|
514 |
+
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
|
515 |
+
</a>
|
516 |
+
</div>
|
517 |
+
''')
|
518 |
+
|
519 |
+
return iface
|
520 |
+
|
521 |
+
if __name__ == "__main__":
|
522 |
+
iface = main()
|
523 |
+
iface.launch()
|
model_architecture.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import timm
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
9 |
+
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
|
10 |
+
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
|
11 |
+
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
|
12 |
+
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
|
13 |
+
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
|
14 |
+
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
|
15 |
+
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
|
16 |
+
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
|
17 |
+
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
|
18 |
+
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
|
19 |
+
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
|
20 |
+
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
|
21 |
+
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
|
22 |
+
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
|
23 |
+
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
|
24 |
+
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
|
25 |
+
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
|
26 |
+
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
|
27 |
+
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
|
28 |
+
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
|
29 |
+
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
|
30 |
+
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
|
31 |
+
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
|
32 |
+
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
|
33 |
+
"Wire-Haired_Fox_Terrier"]
|
34 |
+
|
35 |
+
|
36 |
+
class MorphologicalFeatureExtractor(nn.Module):
|
37 |
+
|
38 |
+
def __init__(self, in_features):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
# 基礎特徵維度設置
|
42 |
+
self.reduced_dim = in_features // 4
|
43 |
+
self.spatial_size = max(7, int(np.sqrt(self.reduced_dim // 64)))
|
44 |
+
|
45 |
+
# 1. 特徵空間轉換器:將一維特徵轉換為二維空間表示
|
46 |
+
self.dimension_transformer = nn.Sequential(
|
47 |
+
nn.Linear(in_features, self.spatial_size * self.spatial_size * 64),
|
48 |
+
nn.LayerNorm(self.spatial_size * self.spatial_size * 64),
|
49 |
+
nn.ReLU()
|
50 |
+
)
|
51 |
+
|
52 |
+
# 2. 形態特徵分析器:分析具體的形態特徵
|
53 |
+
self.morphological_analyzers = nn.ModuleDict({
|
54 |
+
# 體型分析器:分析整體比例和大小
|
55 |
+
'body_proportion': nn.Sequential(
|
56 |
+
# 使用大卷積核捕捉整體體型特徵
|
57 |
+
nn.Conv2d(64, 128, kernel_size=7, padding=3),
|
58 |
+
nn.BatchNorm2d(128),
|
59 |
+
nn.ReLU(),
|
60 |
+
# 使用較小的卷積核精煉特徵
|
61 |
+
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
62 |
+
nn.BatchNorm2d(128),
|
63 |
+
nn.ReLU()
|
64 |
+
),
|
65 |
+
|
66 |
+
# 頭部特徵分析器:關注耳朵、臉部等
|
67 |
+
'head_features': nn.Sequential(
|
68 |
+
# 中等大小的卷積核,適合分析頭部結構
|
69 |
+
nn.Conv2d(64, 128, kernel_size=5, padding=2),
|
70 |
+
nn.BatchNorm2d(128),
|
71 |
+
nn.ReLU(),
|
72 |
+
# 小卷積核捕捉細節
|
73 |
+
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
74 |
+
nn.BatchNorm2d(128),
|
75 |
+
nn.ReLU()
|
76 |
+
),
|
77 |
+
|
78 |
+
# 尾部特徵分析器
|
79 |
+
'tail_features': nn.Sequential(
|
80 |
+
nn.Conv2d(64, 128, kernel_size=5, padding=2),
|
81 |
+
nn.BatchNorm2d(128),
|
82 |
+
nn.ReLU(),
|
83 |
+
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
84 |
+
nn.BatchNorm2d(128),
|
85 |
+
nn.ReLU()
|
86 |
+
),
|
87 |
+
|
88 |
+
# 毛髮特徵分析器:分析毛髮長度、質地等
|
89 |
+
'fur_features': nn.Sequential(
|
90 |
+
# 使用多個小卷積核捕捉毛髮紋理
|
91 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
92 |
+
nn.BatchNorm2d(128),
|
93 |
+
nn.ReLU(),
|
94 |
+
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
95 |
+
nn.BatchNorm2d(128),
|
96 |
+
nn.ReLU()
|
97 |
+
),
|
98 |
+
|
99 |
+
# 顏色特徵分析器:分析顏色分佈
|
100 |
+
'color_pattern': nn.Sequential(
|
101 |
+
# 第一層:捕捉基本顏色分布
|
102 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
103 |
+
nn.BatchNorm2d(128),
|
104 |
+
nn.ReLU(),
|
105 |
+
|
106 |
+
# 第二層:分析顏色模式和花紋
|
107 |
+
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
108 |
+
nn.BatchNorm2d(128),
|
109 |
+
nn.ReLU(),
|
110 |
+
|
111 |
+
# 第三層:整合顏色信息
|
112 |
+
nn.Conv2d(128, 128, kernel_size=1),
|
113 |
+
nn.BatchNorm2d(128),
|
114 |
+
nn.ReLU()
|
115 |
+
)
|
116 |
+
})
|
117 |
+
|
118 |
+
# 3. 特徵注意力機制:動態關注不同特徵
|
119 |
+
self.feature_attention = nn.MultiheadAttention(
|
120 |
+
embed_dim=128,
|
121 |
+
num_heads=8,
|
122 |
+
dropout=0.1,
|
123 |
+
batch_first=True
|
124 |
+
)
|
125 |
+
|
126 |
+
# 4. 特徵關係分析器:分析不同特徵之間的關係
|
127 |
+
self.relation_analyzer = nn.Sequential(
|
128 |
+
nn.Linear(128 * 5, 256), # 4個特徵分析器的輸出
|
129 |
+
nn.LayerNorm(256),
|
130 |
+
nn.ReLU(),
|
131 |
+
nn.Linear(256, 128),
|
132 |
+
nn.LayerNorm(128),
|
133 |
+
nn.ReLU()
|
134 |
+
)
|
135 |
+
|
136 |
+
# 5. 特徵整合器:將所有特徵智能地組合在一起
|
137 |
+
self.feature_integrator = nn.Sequential(
|
138 |
+
nn.Linear(128 * 6, in_features), # 5個原始特徵 + 1個關係特徵
|
139 |
+
nn.LayerNorm(in_features),
|
140 |
+
nn.ReLU()
|
141 |
+
)
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
batch_size = x.size(0)
|
145 |
+
|
146 |
+
# 1. 將特徵轉換為空間形式
|
147 |
+
spatial_features = self.dimension_transformer(x).view(
|
148 |
+
batch_size, 64, self.spatial_size, self.spatial_size
|
149 |
+
)
|
150 |
+
|
151 |
+
# 2. 分析各種形態特徵
|
152 |
+
morphological_features = {}
|
153 |
+
for name, analyzer in self.morphological_analyzers.items():
|
154 |
+
# 提取特定形態特徵
|
155 |
+
features = analyzer(spatial_features)
|
156 |
+
# 使用自適應池化統一特徵大小
|
157 |
+
pooled_features = F.adaptive_avg_pool2d(features, (1, 1))
|
158 |
+
# 重塑特徵為向量形式
|
159 |
+
morphological_features[name] = pooled_features.view(batch_size, -1)
|
160 |
+
|
161 |
+
# 3. 特徵注意力處理
|
162 |
+
# 將所有特徵堆疊成序列
|
163 |
+
stacked_features = torch.stack(list(morphological_features.values()), dim=1)
|
164 |
+
# 應用注意力機制
|
165 |
+
attended_features, _ = self.feature_attention(
|
166 |
+
stacked_features, stacked_features, stacked_features
|
167 |
+
)
|
168 |
+
|
169 |
+
# 4. 分析特徵之間的關係
|
170 |
+
# 將所有特徵連接起來
|
171 |
+
combined_features = torch.cat(list(morphological_features.values()), dim=1)
|
172 |
+
# 提取特徵間的關係
|
173 |
+
relation_features = self.relation_analyzer(combined_features)
|
174 |
+
|
175 |
+
# 5. 特徵整合
|
176 |
+
# 將原始特徵和關係特徵結合
|
177 |
+
final_features = torch.cat([
|
178 |
+
*morphological_features.values(),
|
179 |
+
relation_features
|
180 |
+
], dim=1)
|
181 |
+
|
182 |
+
# 6. 最終整合
|
183 |
+
integrated_features = self.feature_integrator(final_features)
|
184 |
+
|
185 |
+
# 添加殘差連接
|
186 |
+
return integrated_features + x
|
187 |
+
|
188 |
+
|
189 |
+
class MultiHeadAttention(nn.Module):
|
190 |
+
|
191 |
+
def __init__(self, in_dim, num_heads=8):
|
192 |
+
"""
|
193 |
+
Initializes the MultiHeadAttention module.
|
194 |
+
Args:
|
195 |
+
in_dim (int): Dimension of the input features.
|
196 |
+
num_heads (int): Number of attention heads. Defaults to 8.
|
197 |
+
"""
|
198 |
+
super().__init__()
|
199 |
+
self.num_heads = num_heads
|
200 |
+
self.head_dim = max(1, in_dim // num_heads)
|
201 |
+
self.scaled_dim = self.head_dim * num_heads
|
202 |
+
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
|
203 |
+
self.query = nn.Linear(self.scaled_dim, self.scaled_dim) # Query projection
|
204 |
+
self.key = nn.Linear(self.scaled_dim, self.scaled_dim) # Key projection
|
205 |
+
self.value = nn.Linear(self.scaled_dim, self.scaled_dim) # Value projection
|
206 |
+
self.fc_out = nn.Linear(self.scaled_dim, in_dim) # Linear layer to project output back to in_dim
|
207 |
+
|
208 |
+
def forward(self, x):
|
209 |
+
"""
|
210 |
+
Forward pass for multi-head attention mechanism.
|
211 |
+
Args:
|
212 |
+
x (Tensor): Input tensor of shape (batch_size, input_dim).
|
213 |
+
x 是 (N,D), N:批次大小, D:輸入特徵維度
|
214 |
+
Returns:
|
215 |
+
Tensor: Output tensor after applying attention mechanism.
|
216 |
+
"""
|
217 |
+
N = x.shape[0] # Batch size
|
218 |
+
x = self.fc_in(x) # Project input to scaled_dim
|
219 |
+
q = self.query(x).view(N, self.num_heads, self.head_dim) # Compute queries
|
220 |
+
k = self.key(x).view(N, self.num_heads, self.head_dim) # Compute keys
|
221 |
+
v = self.value(x).view(N, self.num_heads, self.head_dim) # Compute values
|
222 |
+
|
223 |
+
# Calculate attention scores
|
224 |
+
energy = torch.einsum("nqd,nkd->nqk", [q, k])
|
225 |
+
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2) # Apply softmax with scaling
|
226 |
+
|
227 |
+
# Compute weighted sum of values based on attention scores
|
228 |
+
out = torch.einsum("nqk,nvd->nqd", [attention, v])
|
229 |
+
out = out.reshape(N, self.scaled_dim) # Concatenate all heads
|
230 |
+
out = self.fc_out(out) # Project back to original input dimension
|
231 |
+
return out
|
232 |
+
|
233 |
+
|
234 |
+
class BaseModel(nn.Module):
|
235 |
+
|
236 |
+
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
237 |
+
super().__init__()
|
238 |
+
self.device = device
|
239 |
+
|
240 |
+
# 1. Initialize backbone
|
241 |
+
self.backbone = timm.create_model(
|
242 |
+
'convnextv2_base',
|
243 |
+
pretrained=True,
|
244 |
+
num_classes=0
|
245 |
+
)
|
246 |
+
|
247 |
+
# 2. 使用測試數據來確定實際的特徵維度
|
248 |
+
with torch.no_grad():
|
249 |
+
dummy_input = torch.randn(1, 3, 224, 224)
|
250 |
+
features = self.backbone(dummy_input)
|
251 |
+
|
252 |
+
if len(features.shape) > 2:
|
253 |
+
features = features.mean([-2, -1])
|
254 |
+
|
255 |
+
self.feature_dim = features.shape[1]
|
256 |
+
|
257 |
+
print(f"Feature Dimension from V2 backbone: {self.feature_dim}")
|
258 |
+
|
259 |
+
# 3. Setup multi-head attention layer
|
260 |
+
self.num_heads = max(1, min(8, self.feature_dim // 64))
|
261 |
+
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
|
262 |
+
|
263 |
+
# 4. Setup classifier
|
264 |
+
self.classifier = nn.Sequential(
|
265 |
+
nn.LayerNorm(self.feature_dim),
|
266 |
+
nn.Dropout(0.3),
|
267 |
+
nn.Linear(self.feature_dim, num_classes)
|
268 |
+
)
|
269 |
+
|
270 |
+
self.morphological_extractor = MorphologicalFeatureExtractor(
|
271 |
+
in_features=self.feature_dim
|
272 |
+
)
|
273 |
+
|
274 |
+
self.feature_fusion = nn.Sequential(
|
275 |
+
nn.Linear(self.feature_dim * 3, self.feature_dim),
|
276 |
+
nn.LayerNorm(self.feature_dim),
|
277 |
+
nn.ReLU(),
|
278 |
+
nn.Linear(self.feature_dim, self.feature_dim),
|
279 |
+
nn.LayerNorm(self.feature_dim),
|
280 |
+
nn.ReLU()
|
281 |
+
)
|
282 |
+
|
283 |
+
def forward(self, x):
|
284 |
+
"""
|
285 |
+
Forward propagation process, combining V2's FCCA and multi-head attention mechanism
|
286 |
+
Args:
|
287 |
+
x (Tensor): Input image tensor of shape [batch_size, channels, height, width]
|
288 |
+
Returns:
|
289 |
+
Tuple[Tensor, Tensor]: Classification logits and attention features
|
290 |
+
"""
|
291 |
+
x = x.to(self.device)
|
292 |
+
|
293 |
+
# 1. Extract base features
|
294 |
+
features = self.backbone(x)
|
295 |
+
if len(features.shape) > 2:
|
296 |
+
features = features.mean([-2, -1])
|
297 |
+
|
298 |
+
# 2. Extract morphological features (including all detail features)
|
299 |
+
morphological_features = self.morphological_extractor(features)
|
300 |
+
|
301 |
+
# 3. Feature fusion (note dimension alignment with new fusion layer)
|
302 |
+
combined_features = torch.cat([
|
303 |
+
features, # Original features
|
304 |
+
morphological_features, # Morphological features
|
305 |
+
features * morphological_features # Feature interaction information
|
306 |
+
], dim=1)
|
307 |
+
fused_features = self.feature_fusion(combined_features)
|
308 |
+
|
309 |
+
# 4. Apply attention mechanism
|
310 |
+
attended_features = self.attention(fused_features)
|
311 |
+
|
312 |
+
# 5. Final classifier
|
313 |
+
logits = self.classifier(attended_features)
|
314 |
+
|
315 |
+
return logits, attended_features
|