Spaces:
Sleeping
Sleeping
Alan Liu
commited on
Commit
·
5f0df3a
1
Parent(s):
989cd20
add prefill memory
Browse files- .streamlit/config.toml +1 -0
- app.py +26 -5
- calc_util.py +136 -7
.streamlit/config.toml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[theme]
|
app.py
CHANGED
@@ -57,13 +57,17 @@ subtotal_operations = [
|
|
57 |
|
58 |
|
59 |
|
60 |
-
col1, col2, col3, col4, col5 = st.columns(5)
|
61 |
|
62 |
inference_config = {}
|
63 |
parameter_count = {}
|
64 |
cached_parameter_count = {}
|
|
|
65 |
prefilling_operation_count = {}
|
66 |
generation_operation_count = {}
|
|
|
|
|
|
|
67 |
gpu_config = {}
|
68 |
inference_info = {}
|
69 |
|
@@ -77,6 +81,7 @@ with col1:
|
|
77 |
model_config['intermediate_size'] = st.number_input('intermediate size', value=model_config['intermediate_size'], format ="%d")
|
78 |
model_config['vocab_size'] = st.number_input('vocab size', value= model_config['vocab_size'], format ="%d")
|
79 |
model_config['max_position_embeddings'] = st.number_input('max position embeddings', value=model_config['max_position_embeddings'], format ="%d")
|
|
|
80 |
|
81 |
header4("Inference Setting")
|
82 |
inference_config['batchsize'] = st.number_input('batchsize', value=1, format ="%d")
|
@@ -131,43 +136,57 @@ with col2:
|
|
131 |
|
132 |
with col3: # Prefilling
|
133 |
prefilling_operation_count = prefilling_operation(model_config, inference_config)
|
134 |
-
|
|
|
135 |
inference_info['inference_prefilling_throughput'] = inference_config['input_seq_length']*inference_config['batchsize']/inference_info['inference_prefilling_time']
|
|
|
136 |
cached_parameter_count['kv_cache'] = 2 * (inference_config['batchsize'] * (model_config['hidden_size'] * model_config['num_hidden_layers'] * inference_config['input_seq_length']))
|
137 |
|
138 |
operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key not in subtotal_operations}
|
139 |
subtotal_operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key in subtotal_operations}
|
|
|
140 |
|
141 |
## Convert dictionaries to pandas dataframes for table display
|
142 |
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
|
143 |
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
|
144 |
-
|
|
|
|
|
|
|
145 |
header4("Inference Ops: Prefilling")
|
146 |
st.markdown(create_table(df_operation_count))
|
147 |
|
148 |
header5("Summary: Prefilling")
|
149 |
st.markdown(create_table(df_subtotal_operation_count))
|
150 |
st.write(f"Prefillng throughput (tokens/s): {inference_info['inference_prefilling_throughput']:.2f}")
|
|
|
|
|
151 |
|
152 |
if inference_config['KV_cache']:
|
153 |
st.write(f"kv cache (Byte): {cached_parameter_count['kv_cache']:,}")
|
154 |
|
155 |
|
156 |
|
157 |
-
with col4: #
|
158 |
generation_operation_count = generation_operation(model_config, inference_config)
|
159 |
-
|
|
|
160 |
inference_info['inference_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize']/inference_info['inference_generation_time']
|
161 |
inference_info['inference_client_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize'] / (inference_info['inference_prefilling_time'] + inference_info['inference_generation_time'])
|
|
|
162 |
cached_parameter_count['kv_cache'] = 2 * (inference_config['batchsize'] * (model_config['hidden_size'] * model_config['num_hidden_layers'] * (inference_config['input_seq_length']+inference_config['output_seq_length'])))
|
163 |
|
164 |
operation_items = {key: "{:,}".format(int(generation_operation_count[key])) for key in generation_operation_count if key not in subtotal_operations}
|
165 |
subtotal_operation_items = {key: "{:,}".format(int(generation_operation_count[key])) for key in generation_operation_count if key in subtotal_operations}
|
|
|
166 |
|
167 |
## Convert dictionaries to pandas dataframes for table display
|
168 |
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
|
169 |
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
|
170 |
|
|
|
|
|
|
|
171 |
header4("Inference Ops: Generation")
|
172 |
st.markdown(create_table(df_operation_count))
|
173 |
|
@@ -175,6 +194,8 @@ with col4: # Prefilling
|
|
175 |
st.markdown(create_table(df_subtotal_operation_count))
|
176 |
st.write(f"Generation-only throughput (tokens/s): {inference_info['inference_generation_throughput']:.2f}")
|
177 |
st.write(f"(Client) Generation throughput (tokens/s): {inference_info['inference_client_generation_throughput']:.2f}")
|
|
|
|
|
178 |
|
179 |
if inference_config['KV_cache']:
|
180 |
st.write(f"kv cache (Byte): {cached_parameter_count['kv_cache']:,}")
|
|
|
57 |
|
58 |
|
59 |
|
60 |
+
col1, col2, col3, col4, col5 = st.columns([1,1.5,2,2,2])
|
61 |
|
62 |
inference_config = {}
|
63 |
parameter_count = {}
|
64 |
cached_parameter_count = {}
|
65 |
+
|
66 |
prefilling_operation_count = {}
|
67 |
generation_operation_count = {}
|
68 |
+
prefilling_memory_count = {}
|
69 |
+
generation_memory_count = {}
|
70 |
+
|
71 |
gpu_config = {}
|
72 |
inference_info = {}
|
73 |
|
|
|
81 |
model_config['intermediate_size'] = st.number_input('intermediate size', value=model_config['intermediate_size'], format ="%d")
|
82 |
model_config['vocab_size'] = st.number_input('vocab size', value= model_config['vocab_size'], format ="%d")
|
83 |
model_config['max_position_embeddings'] = st.number_input('max position embeddings', value=model_config['max_position_embeddings'], format ="%d")
|
84 |
+
model_config['hidden_size_per_head'] = model_config['hidden_size']/model_config['num_attention_heads']
|
85 |
|
86 |
header4("Inference Setting")
|
87 |
inference_config['batchsize'] = st.number_input('batchsize', value=1, format ="%d")
|
|
|
136 |
|
137 |
with col3: # Prefilling
|
138 |
prefilling_operation_count = prefilling_operation(model_config, inference_config)
|
139 |
+
prefilling_activation_memory_count = prefilling_activation_memory(model_config, inference_config)
|
140 |
+
inference_info['inference_prefilling_time'] = prefilling_operation_count['total'] / (gpu_config['TFLOP']*1024**4)
|
141 |
inference_info['inference_prefilling_throughput'] = inference_config['input_seq_length']*inference_config['batchsize']/inference_info['inference_prefilling_time']
|
142 |
+
inference_info['prefilling_memory_latency'] = prefilling_activation_memory_count['total'] / (gpu_config['memory_bandwidth']*1024**3)
|
143 |
cached_parameter_count['kv_cache'] = 2 * (inference_config['batchsize'] * (model_config['hidden_size'] * model_config['num_hidden_layers'] * inference_config['input_seq_length']))
|
144 |
|
145 |
operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key not in subtotal_operations}
|
146 |
subtotal_operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key in subtotal_operations}
|
147 |
+
prefilling_activation_memory_count = {key: "{:,}".format(int(value)) for key, value in prefilling_activation_memory_count.items()}
|
148 |
|
149 |
## Convert dictionaries to pandas dataframes for table display
|
150 |
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
|
151 |
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
|
152 |
+
|
153 |
+
df_operation_count["Activation (Byte)"] = df_operation_count["Operation"].map(prefilling_activation_memory_count)
|
154 |
+
df_subtotal_operation_count["Activation (Byte)"] = df_subtotal_operation_count["Operation"].map(prefilling_activation_memory_count)
|
155 |
+
|
156 |
header4("Inference Ops: Prefilling")
|
157 |
st.markdown(create_table(df_operation_count))
|
158 |
|
159 |
header5("Summary: Prefilling")
|
160 |
st.markdown(create_table(df_subtotal_operation_count))
|
161 |
st.write(f"Prefillng throughput (tokens/s): {inference_info['inference_prefilling_throughput']:.2f}")
|
162 |
+
st.write(f"FLOPS latency: {inference_info['inference_prefilling_time']}")
|
163 |
+
st.write(f"Memory latency: {inference_info['prefilling_memory_latency']}")
|
164 |
|
165 |
if inference_config['KV_cache']:
|
166 |
st.write(f"kv cache (Byte): {cached_parameter_count['kv_cache']:,}")
|
167 |
|
168 |
|
169 |
|
170 |
+
with col4: # Generation
|
171 |
generation_operation_count = generation_operation(model_config, inference_config)
|
172 |
+
generation_activation_memory_count = generation_activation_memory(model_config, inference_config)
|
173 |
+
inference_info['inference_generation_time'] = generation_operation_count['total'] / (gpu_config['TFLOP']*1024**4)
|
174 |
inference_info['inference_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize']/inference_info['inference_generation_time']
|
175 |
inference_info['inference_client_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize'] / (inference_info['inference_prefilling_time'] + inference_info['inference_generation_time'])
|
176 |
+
inference_info['generation_memory_latency'] = generation_activation_memory_count['total'] / (gpu_config['memory_bandwidth']*1024**3)
|
177 |
cached_parameter_count['kv_cache'] = 2 * (inference_config['batchsize'] * (model_config['hidden_size'] * model_config['num_hidden_layers'] * (inference_config['input_seq_length']+inference_config['output_seq_length'])))
|
178 |
|
179 |
operation_items = {key: "{:,}".format(int(generation_operation_count[key])) for key in generation_operation_count if key not in subtotal_operations}
|
180 |
subtotal_operation_items = {key: "{:,}".format(int(generation_operation_count[key])) for key in generation_operation_count if key in subtotal_operations}
|
181 |
+
generation_activation_memory_count = {key: "{:,}".format(int(value)) for key, value in generation_activation_memory_count.items()}
|
182 |
|
183 |
## Convert dictionaries to pandas dataframes for table display
|
184 |
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
|
185 |
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
|
186 |
|
187 |
+
#df_operation_count["Activation (Byte)"] = df_operation_count["Operation"].map(generation_activation_memory_count)
|
188 |
+
#df_subtotal_operation_count["Activation (Byte)"] = df_subtotal_operation_count["Operation"].map(generation_activation_memory_count)
|
189 |
+
|
190 |
header4("Inference Ops: Generation")
|
191 |
st.markdown(create_table(df_operation_count))
|
192 |
|
|
|
194 |
st.markdown(create_table(df_subtotal_operation_count))
|
195 |
st.write(f"Generation-only throughput (tokens/s): {inference_info['inference_generation_throughput']:.2f}")
|
196 |
st.write(f"(Client) Generation throughput (tokens/s): {inference_info['inference_client_generation_throughput']:.2f}")
|
197 |
+
st.write(f"FLOPS latency: {inference_info['inference_generation_time']}")
|
198 |
+
#st.write(f"Memory latency: {inference_info['generation_memory_latency']}")
|
199 |
|
200 |
if inference_config['KV_cache']:
|
201 |
st.write(f"kv cache (Byte): {cached_parameter_count['kv_cache']:,}")
|
calc_util.py
CHANGED
@@ -32,23 +32,23 @@ def positional_embedding_operation(model_config, inference_config):
|
|
32 |
### Below three are the same
|
33 |
def attention_K_operation(model_config, inference_config, seq_length):
|
34 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
35 |
-
B = [model_config['hidden_size'], model_config['
|
36 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
37 |
|
38 |
def attention_Q_operation(model_config, inference_config, seq_length):
|
39 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
40 |
-
B = [model_config['hidden_size'], model_config['
|
41 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
42 |
|
43 |
def attention_V_operation(model_config, inference_config, seq_length):
|
44 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
45 |
-
B = [model_config['hidden_size'], model_config['
|
46 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
47 |
|
48 |
##
|
49 |
def attention_QK_operation(model_config, inference_config, seq_length_Q, seq_length_K):
|
50 |
-
A = [inference_config['batchsize'], seq_length_Q, model_config['
|
51 |
-
B = [model_config['
|
52 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
|
53 |
|
54 |
def attention_softmax_operation(model_config, inference_config,seq_length):
|
@@ -59,7 +59,7 @@ def attention_softmax_operation(model_config, inference_config,seq_length):
|
|
59 |
|
60 |
def attention_multV_operation(model_config, inference_config, seq_length_Q, seq_length_V):
|
61 |
A = [inference_config['batchsize'], seq_length_Q, seq_length_V]
|
62 |
-
B = [seq_length_V, model_config['
|
63 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
|
64 |
|
65 |
def attention_out_operation(model_config, inference_config, seq_length):
|
@@ -153,4 +153,133 @@ def generation_operation(model_config, inference_config):
|
|
153 |
generation_operation_count['mlp'] = generation_operation_count['mlp1'] + generation_operation_count['mlp2']
|
154 |
generation_operation_count['total'] = (generation_operation_count['attention'] + generation_operation_count['mlp'] + generation_operation_count['layernorm'])
|
155 |
|
156 |
-
return generation_operation_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
### Below three are the same
|
33 |
def attention_K_operation(model_config, inference_config, seq_length):
|
34 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
35 |
+
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
36 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
37 |
|
38 |
def attention_Q_operation(model_config, inference_config, seq_length):
|
39 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
40 |
+
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
41 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
42 |
|
43 |
def attention_V_operation(model_config, inference_config, seq_length):
|
44 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
45 |
+
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
46 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
47 |
|
48 |
##
|
49 |
def attention_QK_operation(model_config, inference_config, seq_length_Q, seq_length_K):
|
50 |
+
A = [inference_config['batchsize'], seq_length_Q, model_config['hidden_size_per_head']]
|
51 |
+
B = [model_config['hidden_size_per_head'], seq_length_K]
|
52 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
|
53 |
|
54 |
def attention_softmax_operation(model_config, inference_config,seq_length):
|
|
|
59 |
|
60 |
def attention_multV_operation(model_config, inference_config, seq_length_Q, seq_length_V):
|
61 |
A = [inference_config['batchsize'], seq_length_Q, seq_length_V]
|
62 |
+
B = [seq_length_V, model_config['hidden_size_per_head']]
|
63 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
|
64 |
|
65 |
def attention_out_operation(model_config, inference_config, seq_length):
|
|
|
153 |
generation_operation_count['mlp'] = generation_operation_count['mlp1'] + generation_operation_count['mlp2']
|
154 |
generation_operation_count['total'] = (generation_operation_count['attention'] + generation_operation_count['mlp'] + generation_operation_count['layernorm'])
|
155 |
|
156 |
+
return generation_operation_count
|
157 |
+
|
158 |
+
|
159 |
+
def word_embedding_activation_memory(model_config, inference_config, seq_length):
|
160 |
+
return inference_config['batchsize'] * seq_length * (model_config['vocab_size'] + model_config['hidden_size'])
|
161 |
+
|
162 |
+
def positional_embedding_activation_memory(model_config, inference_config, seq_length):
|
163 |
+
return 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
|
164 |
+
|
165 |
+
def attention_K_activation_memory(model_config, inference_config, seq_length):
|
166 |
+
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
|
167 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
|
168 |
+
|
169 |
+
def attention_V_activation_memory(model_config, inference_config, seq_length):
|
170 |
+
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
|
171 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
|
172 |
+
|
173 |
+
def attention_Q_activation_memory(model_config, inference_config, seq_length):
|
174 |
+
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
|
175 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
|
176 |
+
|
177 |
+
def attention_QK_activation_memory(model_config, inference_config, seq_length_Q, seq_length_K):
|
178 |
+
inputs_Q = inference_config['batchsize'] * seq_length_Q * model_config['hidden_size_per_head']
|
179 |
+
inputs_K = inference_config['batchsize'] * seq_length_K * model_config['hidden_size_per_head']
|
180 |
+
outputs = inference_config['batchsize'] * seq_length_Q * seq_length_K
|
181 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * (inputs_Q + inputs_K + outputs)
|
182 |
+
|
183 |
+
def attention_softmax_activation_memory(model_config, inference_config, seq_length):
|
184 |
+
per_head_per_layer = (2 * inference_config['batchsize'] * seq_length * seq_length)
|
185 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
|
186 |
+
|
187 |
+
def attention_multV_activation_memory(model_config, inference_config, seq_length):
|
188 |
+
per_head_per_layer = inference_config['batchsize'] * seq_length * seq_length + 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size_per_head']
|
189 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
|
190 |
+
|
191 |
+
def attention_out_activation_memory(model_config, inference_config, seq_length):
|
192 |
+
per_head_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
|
193 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
|
194 |
+
|
195 |
+
def layernorm_activation_memory(model_config, inference_config, seq_length):
|
196 |
+
per_layernorm_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
|
197 |
+
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * per_layernorm_per_layer
|
198 |
+
|
199 |
+
def mlp1_activation_memory(model_config, inference_config, seq_length):
|
200 |
+
per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['intermediate_size'])
|
201 |
+
return model_config['num_hidden_layers'] * per_layer
|
202 |
+
|
203 |
+
def mlp2_activation_memory(model_config, inference_config, seq_length):
|
204 |
+
per_layer = inference_config['batchsize'] * seq_length * (model_config['intermediate_size'] + model_config['hidden_size'])
|
205 |
+
return model_config['num_hidden_layers'] * per_layer
|
206 |
+
|
207 |
+
def prefilling_activation_memory(model_config, inference_config):
|
208 |
+
activation_memory = {}
|
209 |
+
|
210 |
+
activation_memory['word_embedding'] = word_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
211 |
+
activation_memory['positional_embedding'] = positional_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
212 |
+
|
213 |
+
activation_memory['attention_Q'] = attention_Q_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
214 |
+
activation_memory['attention_K'] = attention_K_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
215 |
+
activation_memory['attention_V'] = attention_V_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
216 |
+
activation_memory['attention_QK'] = attention_QK_activation_memory(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
|
217 |
+
activation_memory['attention_softmax'] = attention_softmax_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
218 |
+
activation_memory['attention_multV'] = attention_multV_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
219 |
+
activation_memory['attention_out'] = attention_out_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
220 |
+
|
221 |
+
activation_memory['layernorm'] = layernorm_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
222 |
+
|
223 |
+
activation_memory['mlp1'] = mlp1_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
224 |
+
activation_memory['mlp2'] = mlp2_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
225 |
+
|
226 |
+
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
227 |
+
activation_memory['attention'] = (
|
228 |
+
activation_memory['attention_Q'] + activation_memory['attention_K'] +
|
229 |
+
activation_memory['attention_V'] + activation_memory['attention_QK'] +
|
230 |
+
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
|
231 |
+
activation_memory['attention_out']
|
232 |
+
)
|
233 |
+
activation_memory['mlp'] = activation_memory['mlp1'] + activation_memory['mlp2']
|
234 |
+
activation_memory['total'] = (
|
235 |
+
activation_memory['embeddings'] + activation_memory['attention'] +
|
236 |
+
activation_memory['mlp'] + activation_memory['layernorm']
|
237 |
+
)
|
238 |
+
|
239 |
+
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
240 |
+
activation_memory['attention'] = sum([v for k,v in activation_memory.items() if 'attention' in k])
|
241 |
+
activation_memory['mlp'] = activation_memory['mlp1'] + activation_memory['mlp2']
|
242 |
+
activation_memory['total'] = (activation_memory['attention'] + activation_memory['mlp'] + activation_memory['layernorm'])
|
243 |
+
|
244 |
+
return activation_memory
|
245 |
+
|
246 |
+
|
247 |
+
def generation_activation_memory(model_config, inference_config):
|
248 |
+
# TODO Check how KV cache affects activation_memory
|
249 |
+
activation_memory = {}
|
250 |
+
|
251 |
+
activation_memory['word_embedding'] = word_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
252 |
+
activation_memory['positional_embedding'] = positional_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
253 |
+
|
254 |
+
activation_memory['attention_Q'] = attention_Q_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
255 |
+
activation_memory['attention_K'] = attention_K_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
256 |
+
activation_memory['attention_V'] = attention_V_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
257 |
+
activation_memory['attention_QK'] = attention_QK_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'], inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
258 |
+
activation_memory['attention_softmax'] = attention_softmax_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
259 |
+
activation_memory['attention_multV'] = attention_multV_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
260 |
+
activation_memory['attention_out'] = attention_out_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
261 |
+
|
262 |
+
activation_memory['layernorm'] = layernorm_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
263 |
+
|
264 |
+
activation_memory['mlp1'] = mlp1_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
265 |
+
activation_memory['mlp2'] = mlp2_activation_memory(model_config, inference_config, inference_config['input_seq_length'] + inference_config['output_seq_length'])
|
266 |
+
|
267 |
+
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
268 |
+
activation_memory['attention'] = (
|
269 |
+
activation_memory['attention_Q'] + activation_memory['attention_K'] +
|
270 |
+
activation_memory['attention_V'] + activation_memory['attention_QK'] +
|
271 |
+
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
|
272 |
+
activation_memory['attention_out']
|
273 |
+
)
|
274 |
+
activation_memory['mlp'] = activation_memory['mlp1'] + activation_memory['mlp2']
|
275 |
+
activation_memory['total'] = (
|
276 |
+
activation_memory['embeddings'] + activation_memory['attention'] +
|
277 |
+
activation_memory['mlp'] + activation_memory['layernorm']
|
278 |
+
)
|
279 |
+
|
280 |
+
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
281 |
+
activation_memory['attention'] = sum([v for k,v in activation_memory.items() if 'attention' in k])
|
282 |
+
activation_memory['mlp'] = activation_memory['mlp1'] + activation_memory['mlp2']
|
283 |
+
activation_memory['total'] = (activation_memory['attention'] + activation_memory['mlp'] + activation_memory['layernorm'])
|
284 |
+
|
285 |
+
return activation_memory
|