Spaces:
Sleeping
Sleeping
Alan Liu
commited on
Commit
·
dd4f101
1
Parent(s):
d1c8a18
use real number in model to calculate ops and para
Browse files- app.py +30 -23
- calc_util.py +138 -37
- model_util.py +40 -1
app.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
-
from model_util import fetch_dictionary_content, load_parameter
|
6 |
from calc_util import *
|
7 |
from render_util import create_table, header4, header5
|
8 |
|
@@ -15,6 +15,9 @@ if 'model_config' not in st.session_state:
|
|
15 |
def load_model_config(model_id):
|
16 |
if 'model_id' in st.session_state['model_config'] and st.session_state['model_config']['model_id'] == model_id:
|
17 |
return st.session_state['model_config']
|
|
|
|
|
|
|
18 |
model_config = {}
|
19 |
dictionary_content = fetch_dictionary_content(model_id)
|
20 |
if dictionary_content:
|
@@ -37,6 +40,14 @@ def load_model_config(model_id):
|
|
37 |
model_config['max_position_embeddings'] = 2048
|
38 |
model_config['layernorm_operation'] = 2
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
st.session_state['model_config'] = model_config
|
41 |
return model_config
|
42 |
|
@@ -45,7 +56,6 @@ subtotal_parameters = [
|
|
45 |
'embedding_weights',
|
46 |
'attention_weights',
|
47 |
'mlp_weights',
|
48 |
-
'model_total_size (Byte)'
|
49 |
]
|
50 |
|
51 |
subtotal_operations = [
|
@@ -98,27 +108,16 @@ with col1:
|
|
98 |
st.write(f"arithmetic_intensity: {gpu_config['arithmetic_intensity']:.3f}")
|
99 |
|
100 |
with col2:
|
101 |
-
parameter_count
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
parameter_count['mlp2'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
|
112 |
-
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
|
113 |
-
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
|
114 |
-
parameter_count['mlp_weights'] = parameter_count['mlp1'] + parameter_count['mlp2']
|
115 |
-
parameter_count['model_total_size (Byte)'] = inference_config['byte_per_parameter'] * (
|
116 |
-
parameter_count['embedding_weights'] +
|
117 |
-
parameter_count['attention_weights'] +
|
118 |
-
parameter_count['mlp_weights'] +
|
119 |
-
parameter_count['layernorm'])
|
120 |
-
|
121 |
-
|
122 |
|
123 |
parameters_items = {key: "{:,}".format(int(parameter_count[key])) for key in parameter_count if key not in subtotal_parameters}
|
124 |
subtotal_parameters_items = {key: "{:,}".format(int(parameter_count[key])) for key in parameter_count if key in subtotal_parameters}
|
@@ -133,6 +132,14 @@ with col2:
|
|
133 |
header4("Parameters Summary")
|
134 |
st.markdown(create_table(df_subtotal_parameters_items))
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
with col3: # Prefilling
|
138 |
prefilling_operation_count = prefilling_operation(model_config, inference_config)
|
|
|
2 |
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
+
from model_util import fetch_dictionary_content, load_parameter, get_model, classify_module, get_module_tensors
|
6 |
from calc_util import *
|
7 |
from render_util import create_table, header4, header5
|
8 |
|
|
|
15 |
def load_model_config(model_id):
|
16 |
if 'model_id' in st.session_state['model_config'] and st.session_state['model_config']['model_id'] == model_id:
|
17 |
return st.session_state['model_config']
|
18 |
+
if 'parameter_count' in st.session_state:
|
19 |
+
st.session_state.pop('parameter_count')
|
20 |
+
|
21 |
model_config = {}
|
22 |
dictionary_content = fetch_dictionary_content(model_id)
|
23 |
if dictionary_content:
|
|
|
40 |
model_config['max_position_embeddings'] = 2048
|
41 |
model_config['layernorm_operation'] = 2
|
42 |
|
43 |
+
try:
|
44 |
+
model_config['model'] = get_model(model_id, None, None)
|
45 |
+
module_tensors = get_module_tensors(model_config['model'])
|
46 |
+
model_config['module_classes'] = classify_module(module_tensors)
|
47 |
+
except:
|
48 |
+
model_config['model'] = None
|
49 |
+
model_config['module_classes'] = None
|
50 |
+
|
51 |
st.session_state['model_config'] = model_config
|
52 |
return model_config
|
53 |
|
|
|
56 |
'embedding_weights',
|
57 |
'attention_weights',
|
58 |
'mlp_weights',
|
|
|
59 |
]
|
60 |
|
61 |
subtotal_operations = [
|
|
|
108 |
st.write(f"arithmetic_intensity: {gpu_config['arithmetic_intensity']:.3f}")
|
109 |
|
110 |
with col2:
|
111 |
+
if 'parameter_count' not in st.session_state:
|
112 |
+
if model_config['model']:
|
113 |
+
st.info("Model info fetcted!")
|
114 |
+
parameter_count = calc_model_size_from_model(model_config, inference_config)
|
115 |
+
else:
|
116 |
+
st.info("Fail to fetch model info. Using estimation!")
|
117 |
+
parameter_count = model_size_estimate(model_config, inference_config)
|
118 |
+
st.session_state.parameter_count = parameter_count
|
119 |
+
else:
|
120 |
+
parameter_count = st.session_state.parameter_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
parameters_items = {key: "{:,}".format(int(parameter_count[key])) for key in parameter_count if key not in subtotal_parameters}
|
123 |
subtotal_parameters_items = {key: "{:,}".format(int(parameter_count[key])) for key in parameter_count if key in subtotal_parameters}
|
|
|
132 |
header4("Parameters Summary")
|
133 |
st.markdown(create_table(df_subtotal_parameters_items))
|
134 |
|
135 |
+
model_total_size_in_byte = inference_config['byte_per_parameter'] * (
|
136 |
+
parameter_count['embedding_weights'] +
|
137 |
+
parameter_count['attention_weights'] +
|
138 |
+
parameter_count['mlp_weights'] +
|
139 |
+
parameter_count['layernorm']
|
140 |
+
)
|
141 |
+
st.write(f'model_total_size (Byte): {model_total_size_in_byte:,}')
|
142 |
+
|
143 |
|
144 |
with col3: # Prefilling
|
145 |
prefilling_operation_count = prefilling_operation(model_config, inference_config)
|
calc_util.py
CHANGED
@@ -1,5 +1,47 @@
|
|
1 |
import numpy as np
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def multiplication_in_int64(array):
|
5 |
return np.cumprod(np.array(array, dtype=np.int64))[-1]
|
@@ -19,28 +61,76 @@ def word_embedding_operation(model_config, inference_config):
|
|
19 |
#The resultant matrix after the multiplication will be of size \( B \times s \times d_{model} \).
|
20 |
#For each element in this resultant matrix, the number of FLOPs required is \( 2 \times n_{vocab} \). This is because for a single element in the output matrix, we have \( 2N \) FLOPs (with \( N \) being the common dimension), leading to the matrix multiplication FLOP count as:
|
21 |
#\begin{equation}
|
22 |
-
#2 \times B \times s \times n_{
|
23 |
#\end{equation}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
A = [inference_config['batchsize'], inference_config['input_seq_length'], model_config['vocab_size']]
|
25 |
B = [model_config['vocab_size'], model_config['hidden_size']]
|
26 |
-
|
|
|
27 |
|
28 |
|
29 |
def positional_embedding_operation(model_config, inference_config):
|
|
|
|
|
|
|
|
|
30 |
return multiplication_in_int64([inference_config['batchsize'], inference_config['input_seq_length'], model_config['hidden_size']])
|
31 |
|
32 |
### Below three are the same
|
33 |
def attention_K_operation(model_config, inference_config, seq_length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
35 |
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
36 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
37 |
|
38 |
def attention_Q_operation(model_config, inference_config, seq_length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
40 |
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
41 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
42 |
|
43 |
def attention_V_operation(model_config, inference_config, seq_length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
45 |
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
46 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
@@ -49,7 +139,7 @@ def attention_V_operation(model_config, inference_config, seq_length):
|
|
49 |
def attention_QK_operation(model_config, inference_config, seq_length_Q, seq_length_K):
|
50 |
A = [inference_config['batchsize'], seq_length_Q, model_config['hidden_size_per_head']]
|
51 |
B = [model_config['hidden_size_per_head'], seq_length_K]
|
52 |
-
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
|
53 |
|
54 |
def attention_softmax_operation(model_config, inference_config,seq_length):
|
55 |
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
|
@@ -63,6 +153,18 @@ def attention_multV_operation(model_config, inference_config, seq_length_Q, seq_
|
|
63 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
|
64 |
|
65 |
def attention_out_operation(model_config, inference_config, seq_length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
67 |
B = [model_config['hidden_size'], model_config['hidden_size']]
|
68 |
return model_config['num_hidden_layers'] * matrix_operation(A, B)
|
@@ -70,19 +172,34 @@ def attention_out_operation(model_config, inference_config, seq_length):
|
|
70 |
def layernorm_operation(model_config, inference_config, seq_length):
|
71 |
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
|
72 |
# 5 is a modeled value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
layernorm_operation = (5*inference_config['batchsize']*seq_length*model_config['hidden_size'])
|
74 |
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * layernorm_operation
|
75 |
|
76 |
|
77 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
79 |
B = [model_config['hidden_size'], model_config['intermediate_size']]
|
80 |
-
return model_config['num_hidden_layers'] * matrix_operation(A, B)
|
81 |
|
82 |
-
def mlp2_operation(model_config, inference_config, seq_length):
|
83 |
-
A = [inference_config['batchsize'], seq_length, model_config['intermediate_size']]
|
84 |
-
B = [model_config['intermediate_size'], model_config['hidden_size']]
|
85 |
-
return model_config['num_hidden_layers'] * matrix_operation(A, B)
|
86 |
|
87 |
def prefilling_operation(model_config, inference_config):
|
88 |
prefilling_operation_count = {}
|
@@ -99,12 +216,10 @@ def prefilling_operation(model_config, inference_config):
|
|
99 |
|
100 |
prefilling_operation_count['layernorm'] =layernorm_operation(model_config, inference_config, inference_config['input_seq_length'])
|
101 |
|
102 |
-
prefilling_operation_count['
|
103 |
-
prefilling_operation_count['mlp2'] = mlp2_operation(model_config, inference_config, inference_config['input_seq_length'])
|
104 |
|
105 |
prefilling_operation_count['embeddings'] = prefilling_operation_count['word_embedding'] + prefilling_operation_count['positional_embedding']
|
106 |
prefilling_operation_count['attention'] = sum([v for k,v in prefilling_operation_count.items() if 'attention' in k])
|
107 |
-
prefilling_operation_count['mlp'] = prefilling_operation_count['mlp1'] + prefilling_operation_count['mlp2']
|
108 |
prefilling_operation_count['total'] = (prefilling_operation_count['embeddings'] + prefilling_operation_count['attention'] + prefilling_operation_count['mlp'] + prefilling_operation_count['layernorm'])
|
109 |
|
110 |
return prefilling_operation_count
|
@@ -120,8 +235,7 @@ def generation_operation(model_config, inference_config):
|
|
120 |
generation_operation_count['attention_softmax'] = 0
|
121 |
generation_operation_count['attention_multV'] = 0
|
122 |
generation_operation_count['attention_out'] = 0
|
123 |
-
generation_operation_count['
|
124 |
-
generation_operation_count['mlp2'] = 0
|
125 |
generation_operation_count['layernorm'] = 0
|
126 |
|
127 |
for t in range(inference_config['output_seq_length']):
|
@@ -133,8 +247,7 @@ def generation_operation(model_config, inference_config):
|
|
133 |
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, 1)
|
134 |
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
|
135 |
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, 1)
|
136 |
-
generation_operation_count['
|
137 |
-
generation_operation_count['mlp2'] += mlp2_operation(model_config, inference_config, 1)
|
138 |
else:
|
139 |
generation_operation_count['attention_K'] += attention_K_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
140 |
generation_operation_count['attention_V'] += attention_V_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
@@ -143,14 +256,12 @@ def generation_operation(model_config, inference_config):
|
|
143 |
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
144 |
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
|
145 |
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
146 |
-
generation_operation_count['
|
147 |
-
generation_operation_count['mlp2'] += mlp2_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
148 |
|
149 |
generation_operation_count['layernorm'] += layernorm_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
150 |
|
151 |
generation_operation_count['embeddings'] = generation_operation_count['word_embedding'] + generation_operation_count['positional_embedding']
|
152 |
generation_operation_count['attention'] = sum([v for k,v in generation_operation_count.items() if 'attention' in k])
|
153 |
-
generation_operation_count['mlp'] = generation_operation_count['mlp1'] + generation_operation_count['mlp2']
|
154 |
generation_operation_count['total'] = (generation_operation_count['attention'] + generation_operation_count['mlp'] + generation_operation_count['layernorm'])
|
155 |
|
156 |
return generation_operation_count
|
@@ -196,12 +307,9 @@ def layernorm_activation_memory(model_config, inference_config, seq_length):
|
|
196 |
per_layernorm_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
|
197 |
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * per_layernorm_per_layer
|
198 |
|
199 |
-
def
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
def mlp2_activation_memory(model_config, inference_config, seq_length):
|
204 |
-
per_layer = inference_config['batchsize'] * seq_length * (model_config['intermediate_size'] + model_config['hidden_size'])
|
205 |
return model_config['num_hidden_layers'] * per_layer
|
206 |
|
207 |
def prefilling_activation_memory(model_config, inference_config):
|
@@ -220,8 +328,7 @@ def prefilling_activation_memory(model_config, inference_config):
|
|
220 |
|
221 |
activation_memory['layernorm'] = layernorm_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
222 |
|
223 |
-
activation_memory['
|
224 |
-
activation_memory['mlp2'] = mlp2_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
225 |
|
226 |
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
227 |
activation_memory['attention'] = (
|
@@ -230,7 +337,6 @@ def prefilling_activation_memory(model_config, inference_config):
|
|
230 |
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
|
231 |
activation_memory['attention_out']
|
232 |
)
|
233 |
-
activation_memory['mlp'] = activation_memory['mlp1'] + activation_memory['mlp2']
|
234 |
activation_memory['total'] = (
|
235 |
activation_memory['embeddings'] + activation_memory['attention'] +
|
236 |
activation_memory['mlp'] + activation_memory['layernorm']
|
@@ -238,7 +344,6 @@ def prefilling_activation_memory(model_config, inference_config):
|
|
238 |
|
239 |
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
240 |
activation_memory['attention'] = sum([v for k,v in activation_memory.items() if 'attention' in k])
|
241 |
-
activation_memory['mlp'] = activation_memory['mlp1'] + activation_memory['mlp2']
|
242 |
activation_memory['total'] = (activation_memory['attention'] + activation_memory['mlp'] + activation_memory['layernorm'])
|
243 |
|
244 |
return activation_memory
|
@@ -255,8 +360,7 @@ def generation_activation_memory(model_config, inference_config):
|
|
255 |
activation_memory['attention_softmax'] = 0
|
256 |
activation_memory['attention_multV'] = 0
|
257 |
activation_memory['attention_out'] = 0
|
258 |
-
activation_memory['
|
259 |
-
activation_memory['mlp2'] = 0
|
260 |
activation_memory['layernorm'] = 0
|
261 |
|
262 |
for t in range(inference_config['output_seq_length']):
|
@@ -268,8 +372,7 @@ def generation_activation_memory(model_config, inference_config):
|
|
268 |
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, 1)
|
269 |
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
|
270 |
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, 1)
|
271 |
-
activation_memory['
|
272 |
-
activation_memory['mlp2'] += mlp2_activation_memory(model_config, inference_config, 1)
|
273 |
else:
|
274 |
activation_memory['attention_K'] += attention_K_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
275 |
activation_memory['attention_V'] += attention_V_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
@@ -278,8 +381,7 @@ def generation_activation_memory(model_config, inference_config):
|
|
278 |
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
279 |
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
|
280 |
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
281 |
-
activation_memory['
|
282 |
-
activation_memory['mlp2'] += mlp2_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
283 |
|
284 |
activation_memory['layernorm'] += layernorm_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
285 |
|
@@ -290,7 +392,6 @@ def generation_activation_memory(model_config, inference_config):
|
|
290 |
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
|
291 |
activation_memory['attention_out']
|
292 |
)
|
293 |
-
activation_memory['mlp'] = activation_memory['mlp1'] + activation_memory['mlp2']
|
294 |
activation_memory['total'] = (
|
295 |
activation_memory['embeddings'] + activation_memory['attention'] +
|
296 |
activation_memory['mlp'] + activation_memory['layernorm']
|
|
|
1 |
import numpy as np
|
2 |
+
from collections import defaultdict
|
3 |
+
from functools import partial
|
4 |
+
from typing import List
|
5 |
+
from model_util import get_module_tensors_matched
|
6 |
+
|
7 |
+
def calc_model_size_from_model(model_config, inference_config):
|
8 |
+
get_module_tensors_matched_partial = partial(get_module_tensors_matched, module_classes_dict = model_config['module_classes'])
|
9 |
+
|
10 |
+
parameter_count = defaultdict(float)
|
11 |
+
parameter_count['word_embedding'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'embed' in x and 'pos' not in x)])
|
12 |
+
parameter_count['positional_embedding'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'embed' in x and 'pos' in x)])
|
13 |
+
|
14 |
+
parameter_count['attention_Q'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'q' in x)])
|
15 |
+
parameter_count['attention_K'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'k' in x)])
|
16 |
+
parameter_count['attention_V'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'v' in x)])
|
17 |
+
parameter_count['attention_out'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and ('out_' in x or 'o_' in x))])
|
18 |
+
|
19 |
+
parameter_count['layernorm'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'norm' in x)])
|
20 |
+
parameter_count['mlp_weights'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'fc' in x or 'mlp' in x)])
|
21 |
+
|
22 |
+
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
|
23 |
+
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
|
24 |
+
|
25 |
+
return parameter_count
|
26 |
+
|
27 |
+
def model_size_estimate(model_config, inference_config):
|
28 |
+
parameter_count = {}
|
29 |
+
parameter_count['word_embedding'] = model_config['vocab_size']*model_config['hidden_size']
|
30 |
+
parameter_count['positional_embedding'] = model_config['max_position_embeddings']*model_config['hidden_size']
|
31 |
+
|
32 |
+
parameter_count['attention_Q'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
|
33 |
+
parameter_count['attention_K'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
|
34 |
+
parameter_count['attention_V'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
|
35 |
+
parameter_count['attention_out'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
|
36 |
+
|
37 |
+
parameter_count['layernorm'] = 2*model_config['layernorm_operation']*model_config['num_hidden_layers']*model_config['hidden_size']
|
38 |
+
parameter_count['mlp1'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
|
39 |
+
parameter_count['mlp2'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
|
40 |
+
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
|
41 |
+
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
|
42 |
+
parameter_count['mlp_weights'] = parameter_count['mlp1'] + parameter_count['mlp2']
|
43 |
+
|
44 |
+
return parameter_count
|
45 |
|
46 |
def multiplication_in_int64(array):
|
47 |
return np.cumprod(np.array(array, dtype=np.int64))[-1]
|
|
|
61 |
#The resultant matrix after the multiplication will be of size \( B \times s \times d_{model} \).
|
62 |
#For each element in this resultant matrix, the number of FLOPs required is \( 2 \times n_{vocab} \). This is because for a single element in the output matrix, we have \( 2N \) FLOPs (with \( N \) being the common dimension), leading to the matrix multiplication FLOP count as:
|
63 |
#\begin{equation}
|
64 |
+
#2 \times B \times s \times n_{v ocab} \times d_{model}
|
65 |
#\end{equation}
|
66 |
+
if model_config['module_classes']:
|
67 |
+
modules = get_module_tensors_matched(lambda x: 'embed' in x and 'pos' not in x, model_config['module_classes'])
|
68 |
+
A = [inference_config['batchsize'], inference_config['input_seq_length'], modules[0][0]]
|
69 |
+
B = modules[0]
|
70 |
+
op_count = matrix_operation(A, B)
|
71 |
+
return op_count
|
72 |
+
|
73 |
A = [inference_config['batchsize'], inference_config['input_seq_length'], model_config['vocab_size']]
|
74 |
B = [model_config['vocab_size'], model_config['hidden_size']]
|
75 |
+
op_count = matrix_operation(A, B)
|
76 |
+
return op_count
|
77 |
|
78 |
|
79 |
def positional_embedding_operation(model_config, inference_config):
|
80 |
+
if model_config['module_classes']:
|
81 |
+
modules = get_module_tensors_matched(lambda x: 'embed' in x and 'pos' in x, model_config['module_classes'])
|
82 |
+
return multiplication_in_int64([inference_config['batchsize'], inference_config['input_seq_length'], modules[0][-1]])
|
83 |
+
|
84 |
return multiplication_in_int64([inference_config['batchsize'], inference_config['input_seq_length'], model_config['hidden_size']])
|
85 |
|
86 |
### Below three are the same
|
87 |
def attention_K_operation(model_config, inference_config, seq_length):
|
88 |
+
if model_config['module_classes']:
|
89 |
+
modules = get_module_tensors_matched(lambda x: 'att' in x and 'k' in x , model_config['module_classes'])
|
90 |
+
total = 0
|
91 |
+
for module in modules:
|
92 |
+
if len(module) > 1:
|
93 |
+
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
94 |
+
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
95 |
+
total += model_config['num_attention_heads']*matrix_operation(A, B)
|
96 |
+
else:
|
97 |
+
total += model_config['hidden_size']
|
98 |
+
return total
|
99 |
+
|
100 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
101 |
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
102 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
103 |
|
104 |
def attention_Q_operation(model_config, inference_config, seq_length):
|
105 |
+
if model_config['module_classes']:
|
106 |
+
modules = get_module_tensors_matched(lambda x: 'att' in x and 'q' in x , model_config['module_classes'])
|
107 |
+
total = 0
|
108 |
+
for module in modules:
|
109 |
+
if len(module) > 1:
|
110 |
+
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
111 |
+
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
112 |
+
total += model_config['num_attention_heads']*matrix_operation(A, B)
|
113 |
+
else:
|
114 |
+
total += model_config['hidden_size']
|
115 |
+
return total
|
116 |
+
|
117 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
118 |
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
119 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
120 |
|
121 |
def attention_V_operation(model_config, inference_config, seq_length):
|
122 |
+
if model_config['module_classes']:
|
123 |
+
modules = get_module_tensors_matched(lambda x: 'att' in x and 'v' in x , model_config['module_classes'])
|
124 |
+
total = 0
|
125 |
+
for module in modules:
|
126 |
+
if len(module) > 1:
|
127 |
+
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
128 |
+
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
129 |
+
total += model_config['num_attention_heads']*matrix_operation(A, B)
|
130 |
+
else:
|
131 |
+
total += model_config['hidden_size']
|
132 |
+
return total
|
133 |
+
|
134 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
135 |
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
|
136 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
|
|
139 |
def attention_QK_operation(model_config, inference_config, seq_length_Q, seq_length_K):
|
140 |
A = [inference_config['batchsize'], seq_length_Q, model_config['hidden_size_per_head']]
|
141 |
B = [model_config['hidden_size_per_head'], seq_length_K]
|
142 |
+
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
|
143 |
|
144 |
def attention_softmax_operation(model_config, inference_config,seq_length):
|
145 |
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
|
|
|
153 |
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
|
154 |
|
155 |
def attention_out_operation(model_config, inference_config, seq_length):
|
156 |
+
if model_config['module_classes']:
|
157 |
+
modules = get_module_tensors_matched(lambda x: 'att' in x and 'k' in x , model_config['module_classes'])
|
158 |
+
total = 0
|
159 |
+
for module in modules:
|
160 |
+
if len(module) > 1:
|
161 |
+
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
162 |
+
B = [model_config['hidden_size'], model_config['hidden_size']]
|
163 |
+
total += matrix_operation(A, B)
|
164 |
+
else:
|
165 |
+
total += model_config['hidden_size']
|
166 |
+
return total
|
167 |
+
|
168 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
169 |
B = [model_config['hidden_size'], model_config['hidden_size']]
|
170 |
return model_config['num_hidden_layers'] * matrix_operation(A, B)
|
|
|
172 |
def layernorm_operation(model_config, inference_config, seq_length):
|
173 |
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
|
174 |
# 5 is a modeled value
|
175 |
+
if model_config['module_classes']:
|
176 |
+
modules = get_module_tensors_matched(lambda x: 'norm' in x, model_config['module_classes'])
|
177 |
+
total = 0
|
178 |
+
for module in modules:
|
179 |
+
total += model_config['hidden_size']
|
180 |
+
return 5*total
|
181 |
+
|
182 |
layernorm_operation = (5*inference_config['batchsize']*seq_length*model_config['hidden_size'])
|
183 |
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * layernorm_operation
|
184 |
|
185 |
|
186 |
+
def mlp_operation(model_config, inference_config, seq_length):
|
187 |
+
if model_config['module_classes']:
|
188 |
+
modules = get_module_tensors_matched(lambda x: 'fc' in x or 'mlp' in x, model_config['module_classes'])
|
189 |
+
total = 0
|
190 |
+
for module in modules:
|
191 |
+
if len(module) > 1:
|
192 |
+
A = [inference_config['batchsize'], seq_length, module[1]]
|
193 |
+
B = [module[1], module[0]]
|
194 |
+
total += matrix_operation(A, B)
|
195 |
+
else:
|
196 |
+
total += modules[-1][0]
|
197 |
+
return total
|
198 |
+
|
199 |
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
|
200 |
B = [model_config['hidden_size'], model_config['intermediate_size']]
|
201 |
+
return model_config['num_hidden_layers'] * (2*matrix_operation(A, B))
|
202 |
|
|
|
|
|
|
|
|
|
203 |
|
204 |
def prefilling_operation(model_config, inference_config):
|
205 |
prefilling_operation_count = {}
|
|
|
216 |
|
217 |
prefilling_operation_count['layernorm'] =layernorm_operation(model_config, inference_config, inference_config['input_seq_length'])
|
218 |
|
219 |
+
prefilling_operation_count['mlp'] = mlp_operation(model_config, inference_config, inference_config['input_seq_length'])
|
|
|
220 |
|
221 |
prefilling_operation_count['embeddings'] = prefilling_operation_count['word_embedding'] + prefilling_operation_count['positional_embedding']
|
222 |
prefilling_operation_count['attention'] = sum([v for k,v in prefilling_operation_count.items() if 'attention' in k])
|
|
|
223 |
prefilling_operation_count['total'] = (prefilling_operation_count['embeddings'] + prefilling_operation_count['attention'] + prefilling_operation_count['mlp'] + prefilling_operation_count['layernorm'])
|
224 |
|
225 |
return prefilling_operation_count
|
|
|
235 |
generation_operation_count['attention_softmax'] = 0
|
236 |
generation_operation_count['attention_multV'] = 0
|
237 |
generation_operation_count['attention_out'] = 0
|
238 |
+
generation_operation_count['mlp'] = 0
|
|
|
239 |
generation_operation_count['layernorm'] = 0
|
240 |
|
241 |
for t in range(inference_config['output_seq_length']):
|
|
|
247 |
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, 1)
|
248 |
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
|
249 |
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, 1)
|
250 |
+
generation_operation_count['mlp'] += mlp_operation(model_config, inference_config, 1)
|
|
|
251 |
else:
|
252 |
generation_operation_count['attention_K'] += attention_K_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
253 |
generation_operation_count['attention_V'] += attention_V_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
|
|
256 |
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
257 |
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
|
258 |
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
259 |
+
generation_operation_count['mlp'] += mlp_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
|
|
260 |
|
261 |
generation_operation_count['layernorm'] += layernorm_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
262 |
|
263 |
generation_operation_count['embeddings'] = generation_operation_count['word_embedding'] + generation_operation_count['positional_embedding']
|
264 |
generation_operation_count['attention'] = sum([v for k,v in generation_operation_count.items() if 'attention' in k])
|
|
|
265 |
generation_operation_count['total'] = (generation_operation_count['attention'] + generation_operation_count['mlp'] + generation_operation_count['layernorm'])
|
266 |
|
267 |
return generation_operation_count
|
|
|
307 |
per_layernorm_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
|
308 |
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * per_layernorm_per_layer
|
309 |
|
310 |
+
def mlp_activation_memory(model_config, inference_config, seq_length):
|
311 |
+
# two mlp layer
|
312 |
+
per_layer = 2 * inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['intermediate_size'])
|
|
|
|
|
|
|
313 |
return model_config['num_hidden_layers'] * per_layer
|
314 |
|
315 |
def prefilling_activation_memory(model_config, inference_config):
|
|
|
328 |
|
329 |
activation_memory['layernorm'] = layernorm_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
330 |
|
331 |
+
activation_memory['mlp'] = mlp_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
|
|
|
332 |
|
333 |
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
334 |
activation_memory['attention'] = (
|
|
|
337 |
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
|
338 |
activation_memory['attention_out']
|
339 |
)
|
|
|
340 |
activation_memory['total'] = (
|
341 |
activation_memory['embeddings'] + activation_memory['attention'] +
|
342 |
activation_memory['mlp'] + activation_memory['layernorm']
|
|
|
344 |
|
345 |
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
|
346 |
activation_memory['attention'] = sum([v for k,v in activation_memory.items() if 'attention' in k])
|
|
|
347 |
activation_memory['total'] = (activation_memory['attention'] + activation_memory['mlp'] + activation_memory['layernorm'])
|
348 |
|
349 |
return activation_memory
|
|
|
360 |
activation_memory['attention_softmax'] = 0
|
361 |
activation_memory['attention_multV'] = 0
|
362 |
activation_memory['attention_out'] = 0
|
363 |
+
activation_memory['mlp'] = 0
|
|
|
364 |
activation_memory['layernorm'] = 0
|
365 |
|
366 |
for t in range(inference_config['output_seq_length']):
|
|
|
372 |
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, 1)
|
373 |
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
|
374 |
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, 1)
|
375 |
+
activation_memory['mlp'] += mlp_activation_memory(model_config, inference_config, 1)
|
|
|
376 |
else:
|
377 |
activation_memory['attention_K'] += attention_K_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
378 |
activation_memory['attention_V'] += attention_V_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
|
|
381 |
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
382 |
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
|
383 |
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
384 |
+
activation_memory['mlp'] += mlp_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
|
|
385 |
|
386 |
activation_memory['layernorm'] += layernorm_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
|
387 |
|
|
|
392 |
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
|
393 |
activation_memory['attention_out']
|
394 |
)
|
|
|
395 |
activation_memory['total'] = (
|
396 |
activation_memory['embeddings'] + activation_memory['attention'] +
|
397 |
activation_memory['mlp'] + activation_memory['layernorm']
|
model_util.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import requests
|
|
|
|
|
2 |
# Utilities related to loading in and working with models/specific models
|
3 |
from urllib.parse import urlparse
|
4 |
import torch
|
5 |
from accelerate.commands.estimate import check_has_model, create_empty_model
|
6 |
-
from accelerate.utils import compute_module_sizes
|
7 |
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
8 |
|
|
|
9 |
def fetch_dictionary_content(model_id):
|
10 |
MODEL_URL = "https://huggingface.co/{model_id}/raw/main/config.json"
|
11 |
response = requests.get(MODEL_URL.format(model_id=model_id))
|
@@ -85,10 +88,46 @@ def get_model(model_name: str, library: str, access_token: str):
|
|
85 |
)
|
86 |
return model
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
if __name__ == '__main__':
|
91 |
model = get_model('NousResearch/Nous-Hermes-Llama2-13b', None, None)
|
|
|
|
|
92 |
sizes = compute_module_sizes(model, dtype=torch.int8)
|
93 |
size_dict = {
|
94 |
'attn':0,
|
|
|
1 |
import requests
|
2 |
+
import re
|
3 |
+
from collections import defaultdict
|
4 |
# Utilities related to loading in and working with models/specific models
|
5 |
from urllib.parse import urlparse
|
6 |
import torch
|
7 |
from accelerate.commands.estimate import check_has_model, create_empty_model
|
8 |
+
from accelerate.utils import compute_module_sizes, named_module_tensors
|
9 |
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
10 |
|
11 |
+
|
12 |
def fetch_dictionary_content(model_id):
|
13 |
MODEL_URL = "https://huggingface.co/{model_id}/raw/main/config.json"
|
14 |
response = requests.get(MODEL_URL.format(model_id=model_id))
|
|
|
88 |
)
|
89 |
return model
|
90 |
|
91 |
+
def get_module_tensors(model):
|
92 |
+
module_tensors = {}
|
93 |
+
for name, tensor in named_module_tensors(model, recurse=True):
|
94 |
+
module_tensors[name] = tensor.shape
|
95 |
+
|
96 |
+
return module_tensors
|
97 |
+
|
98 |
+
|
99 |
+
def classify_module(module_tensors):
|
100 |
+
# A dictionary to store counts for each generic layer type
|
101 |
+
module_classes = defaultdict(list)
|
102 |
+
|
103 |
+
# This function removes all numbers from a given string
|
104 |
+
def remove_numbers(s):
|
105 |
+
return re.sub(r'\d+', '', s)
|
106 |
+
|
107 |
+
# Loop through all named parameters of the model
|
108 |
+
for name in module_tensors:
|
109 |
+
# Remove numbers from the name
|
110 |
+
generic_name = remove_numbers(name)
|
111 |
+
generic_name = generic_name.replace('..', '.')
|
112 |
+
|
113 |
+
# If the name already exists in the dictionary, increase the count, else set it to 1
|
114 |
+
module_classes[generic_name].append({name: module_tensors[name]})
|
115 |
+
|
116 |
+
return module_classes
|
117 |
+
|
118 |
+
def get_module_tensors_matched(filter_fn, module_classes_dict):
|
119 |
+
matched = []
|
120 |
+
for generic, module_list in module_classes_dict.items():
|
121 |
+
if filter_fn(generic.lower()):
|
122 |
+
matched.extend([v for module in module_list for v in module.values()])
|
123 |
+
|
124 |
+
return matched
|
125 |
|
126 |
|
127 |
if __name__ == '__main__':
|
128 |
model = get_model('NousResearch/Nous-Hermes-Llama2-13b', None, None)
|
129 |
+
module_tensors = get_module_tensors(model)
|
130 |
+
module_classes = classify_module(module_tensors)
|
131 |
sizes = compute_module_sizes(model, dtype=torch.int8)
|
132 |
size_dict = {
|
133 |
'attn':0,
|