import gradio as gr import torch import cv2 ### CAM explainer code from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools) ### class XGradCAM: def __init__(self, model, targetLayer, targetClass, image, dims, device): # set any frozen layers to trainable # gradcam cannot be calculated without it for param in model.parameters(): if not param.requires_grad: param.requires_grad = True self.model = model self.targetLayer = targetLayer self.targetClass = targetClass self.image = image self.dims = dims self.device = device def visualize(self): from pytorch_grad_cam import XGradCAM, GuidedBackpropReLUModel from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_grad_cam.utils.image import show_cam_on_image, deprocess_image, preprocess_image import torch import cv2 import numpy as np import matplotlib.pyplot as plt self.model.eval().to(self.device) image = cv2.resize(self.image, self.dims) # convert to rgb if image is grayscale converted = False if len(image.shape) == 2: converted = True image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) rgb_img = np.float32(image) / 255 input_tensor = preprocess_image(rgb_img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) input_tensor = input_tensor.to(self.device) self.targetLayer = [self.targetLayer] if self.targetClass is None: targets = None else: targets = [ClassifierOutputTarget(self.targetClass)] cam = XGradCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available()) # convert back to grayscale if that is the initial dim if converted: input_tensor = input_tensor[:, 0:1, :, :] grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False, eigen_smooth=False) grayscale_cam = grayscale_cam[0, :] cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True) cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR) gb_model = GuidedBackpropReLUModel(model=self.model, use_cuda=torch.cuda.is_available()) gb = gb_model(input_tensor, target_category=None) cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam]) cam_gb = deprocess_image(cam_mask * gb) gb = deprocess_image(gb) print("XGradCAM, Guided backpropagation, and Guided XGradCAM are generated. ") return cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR) class EigenCAM: def __init__(self, model, targetLayer, boxes, classes, colors, reshape, image, device): self.model = model self.targetLayer = targetLayer self.boxes = boxes self.classes = classes self.colors = colors self.reshape = reshape self.image = image self.device = device def visualize(self): from pytorch_grad_cam import EigenCAM from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image, scale_cam_image import torchvision import torch import cv2 import numpy as np self.model.eval().to(self.device) rgb_img = np.float32(self.image) / 255 transform = torchvision.transforms.ToTensor() input_tensor = transform(rgb_img) input_tensor = input_tensor.unsqueeze(0) input_tensor = input_tensor.to(self.device) self.targetLayer = [self.targetLayer] if self.reshape is None: cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available()) else: cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available(), reshape_transform=self.reshape) targets = [] grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False, eigen_smooth=False) grayscale_cam = grayscale_cam[0, :] cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True) renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) for x1, y1, x2, y2 in self.boxes: renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) renormalized_cam = scale_cam_image(renormalized_cam) eigencam_image_renormalized = show_cam_on_image(rgb_img, renormalized_cam, use_rgb=True) for i, box in enumerate(self.boxes): color = self.colors[i] cv2.rectangle( eigencam_image_renormalized, (box[0], box[1]), (box[2], box[3]), color, 2 ) cv2.putText(eigencam_image_renormalized, self.classes[i], (box[0], box[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, lineType=cv2.LINE_AA) print("EigenCAM is generated. ") return eigencam_image_renormalized ### For Gradio Demo ### def xgradcam(image, model_code, target_class): global model, target_layer exec(model_code, globals()) if target_class == "": target_class = None else: target_class = int(target_class) image_dims = (224, 224) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') xgradcam = XGradCAM(model, target_layer, target_class, image, image_dims, device) return xgradcam.visualize() def eigencam(image, model_code, class_code, process_code, reshape_code): global input_image, model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape input_image = cv2.resize(image, (640, 640)) exec(model_code, globals()) exec(class_code, globals()) exec(process_code, globals()) exec(reshape_code, globals()) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') eigencam = EigenCAM(model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape, input_image, device) return eigencam.visualize() with gr.Blocks() as demo: gr.Markdown( """ # Class Activation Mapping (CAM) Explainer Demo This is a demo for CAM explainer from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools). \ CAM is an approach which localizes regions in the image responsible for a class prediction. \ demo shows visualization of XGradCAM for object classification model and EigenCAM for object detection model. """ ) with gr.Tab("XGradCAM"): with gr.Row(): with gr.Column(): xgradcam_image = gr.Image(label="Input Image") gr.Markdown( """ Load the pretrained model to the variable model depending on how it was saved. Then, specify target_layer (normally the last convolutional layer) to compute CAM for. \ Here are some common choices: - FasterRCNN: model.backbone - ResNet18 and 50: model.layer4 - VGG and DenseNet161: model.features Please don't change the variable names in the following code. """ ) xgradcam_model = gr.Code(label="Model and Target Layer", value= """ from torchvision.models import resnet50, ResNet50_Weights model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2) target_layer = model.layer4 """, language="python") gr.Markdown( """ Enter the target category as an integer to compute CAM for. It is the category index in the range [0, NUM_OF_CLASSES-1] based on the training dataset. \ If it is left blank, the highest scoring category will be used. """ ) xgradcam_targetClass = gr.Textbox(label="Target Category") xgradcam_output = gr.Image() xgradcam_button = gr.Button("Submit") with gr.Tab("EigenCAM"): with gr.Row(): with gr.Column(): eigencam_image = gr.Image(label="Input Image") gr.Markdown( """ Load the pretrained model to the variable model depending on how it was saved. Then, specify target_layer (normally the last convolutional layer) to compute CAM for. \ Here are some common choices: - FasterRCNN: model.backbone - ResNet18 and 50: model.layer4 - VGG and DenseNet161: model.features Please don't change the variable names in the following code. """ ) eigencam_model = gr.Code(label="Model and Target Layer", value= """ from torchvision.models.detection import fasterrcnn_resnet50_fpn model = fasterrcnn_resnet50_fpn(pretrained=True).eval() target_layer = model.backbone """, language="python") gr.Markdown( """ In the case there is no class name in the output from the model, specify class_labels as a list to print them with corresponding bounding box in the image. \ Depending on the model, the class name might not be needed (e.g. YOLO). Then, create color as a list with a size of the number of classes. """ ) eigencam_class = gr.Code(label="Class Name", value= """ import numpy as np class_labels = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] color = np.random.uniform(0, 255, size=(len(class_labels), 3)) """, language="python") gr.Markdown( """ Get output of the model (in the case of FasterRCNN, convert input_image to a tensor first). Then, write a custom process_output function to process the outputs from the model. \ You should get bounding_box_coordinates, class_names, and box_colors of the detected objects with a higher detection score than detection_threshold value. \ If you use other models than FasterRCNN, you need to make your own custom process function to match the structure of the outputs from this function. """ ) eigencam_process = gr.Code(label="Output Processing", value= """ import torchvision transform = torchvision.transforms.ToTensor() input_tensor = transform(np.float32(input_image) / 255).unsqueeze(0) output = model(input_tensor)[0] def process_output(output, class_labels, color, detection_threshold): boxes, classes, labels, colors = [], [], [], [] box = output['boxes'].tolist() name = [class_labels[i] for i in output['labels'].detach().numpy()] label = output['labels'].detach().numpy() for i in range(len(name)): score = output['scores'].detach().numpy()[i] if score < detection_threshold: continue boxes.append([int(b) for b in box[i]]) classes.append(name[i]) colors.append(color[label[i]]) return boxes, classes, colors detection_threshold = 0.9 bounding_box_coordinates, class_names, box_colors = process_output(output, class_labels, color, detection_threshold) """, language="python") gr.Markdown( """ Write a custom reshape function to get the activations from the model and process them into 2D format. \ For example, the backbone of FasterRCNN outputs 5 different tenors with different spatial size as an Ordered Dict, \ thus, we need a custom function which aggregates these image tensors, resizes them to a common shape, and concatenates them. \ If you use other models than FasterRCNN, you need to write your own custom reshape function. """ ) eigencam_reshape = gr.Code(label="Reshape", value= """ def reshape(x): target_size = x['pool'].size()[-2 : ] activations = [] for key, value in x.items(): activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear')) activations = torch.cat(activations, axis=1) return activations """, language="python") eigencam_output = gr.Image() eigencam_button = gr.Button("Submit") xgradcam_button.click(xgradcam, inputs=[xgradcam_image, xgradcam_model, xgradcam_targetClass], outputs=xgradcam_output) eigencam_button.click(eigencam, inputs=[eigencam_image, eigencam_model, eigencam_class, eigencam_process, eigencam_reshape], outputs=eigencam_output) demo.launch()