Spaces:
Running
Running
import gradio as gr | |
from random import randint | |
from all_models import models | |
from externalmod import gr_Interface_load | |
import asyncio | |
import os | |
from threading import RLock | |
lock = RLock() | |
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load.keys(): | |
try: | |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) | |
except Exception as error: | |
print(error) | |
m = gr.Interface(lambda: None, ['text'], ['image']) | |
models_load.update({model: m}) | |
load_fn(models) | |
num_models = 1 | |
max_imagesone = 1 | |
max_images = 6 | |
default_models = models[:num_models] | |
inference_timeout = 300 | |
MAX_SEED = 2**32-1 | |
def extend_choices(choices): | |
return choices + (num_models - len(choices)) * ['NA'] | |
def update_imgbox(choices): | |
choices_plus = extend_choices(choices) | |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] | |
def gen_fn_original(model_str, prompt): | |
if model_str == 'NA': | |
return None | |
noise = str('') #str(randint(0, 99999999999)) | |
return models_load[model_str](f'{prompt} {noise}') | |
def gen_fnsix(model_str, prompt): | |
if model_str == 'NA': | |
return None | |
noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999)) | |
return models_load[model_str](f'{prompt} {noisesix}') | |
# https://huggingface.co/docs/api-inference/detailed_parameters | |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client | |
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout): | |
from pathlib import Path | |
kwargs = {} | |
if height is not None and height >= 256: kwargs["height"] = height | |
if width is not None and width >= 256: kwargs["width"] = width | |
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps | |
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg | |
noise = "" | |
if seed >= 0: kwargs["seed"] = seed | |
else: | |
rand = randint(1, 500) | |
for i in range(rand): | |
noise += " " | |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, | |
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) | |
await asyncio.sleep(0) | |
try: | |
result = await asyncio.wait_for(task, timeout=timeout) | |
except (Exception, asyncio.TimeoutError) as e: | |
print(e) | |
print(f"Task timed out: {model_str}") | |
if not task.done(): task.cancel() | |
result = None | |
if task.done() and result is not None: | |
with lock: | |
png_path = "image.png" | |
result.save(png_path) | |
image = str(Path(png_path).resolve()) | |
return image | |
return None | |
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1): | |
if model_str == 'NA': | |
return None | |
try: | |
loop = asyncio.new_event_loop() | |
result = loop.run_until_complete(infer(model_str, prompt, nprompt, | |
height, width, steps, cfg, seed, inference_timeout)) | |
except (Exception, asyncio.CancelledError) as e: | |
print(e) | |
print(f"Task aborted: {model_str}") | |
result = None | |
finally: | |
loop.close() | |
return result | |
css=""" | |
.gradio-container {max-width: 1200px; margin: 0 auto; !important;} | |
.output { width=128px; height=128px; !important; } | |
.outputone { width=512px; height=512px; !important; } | |
""" | |
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css) as demo: | |
gr.HTML( | |
""" | |
<div> | |
<p> <center><img src="https://huggingface.co/Yntec/OpenGenDiffusers/resolve/main/pp.png" style="height:128px; width:482px; margin-top: -22px; margin-bottom: -44px;" span title="Free ai art image generator Printing Press"></center> | |
</p> | |
""" | |
) | |
with gr.Tab('One Image'): | |
model_choice = gr.Dropdown(models, label=f'Choose a model from the {int(len(models))} available! Try clearing the box and typing on it to filter them!', value=models[0], filterable=True) | |
with gr.Group(): | |
txt_input = gr.Textbox(label='Your prompt:', lines=1) | |
with gr.Accordion("Advanced", open=False, visible=True): | |
neg_input = gr.Textbox(label='Negative prompt:', lines=1) | |
with gr.Row(): | |
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
with gr.Row(): | |
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) | |
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) | |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) | |
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False) | |
with gr.Row(): | |
gen_button = gr.Button('Generate', variant='primary', scale=3) | |
#stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1) | |
#gen_button.click(lambda: gr.update(interactive=True), None, stop_button) | |
with gr.Row(): | |
output = [gr.Image(label='', show_download_button=True, elem_classes="outputone", | |
interactive=False, min_width=80, show_share_button=False, format="png", | |
visible=True) for _ in range(max_imagesone)] | |
for i, o in enumerate(output): | |
img_in = gr.Number(i, visible = False) | |
num_imagesone.change(lambda i, n: gr.update(visible = (i < n)), [img_in, num_imagesone], o, show_progress = False) | |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], | |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None, | |
inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input, | |
height, width, steps, cfg, seed], outputs=[o], | |
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button | |
#stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels=[gen_event]) | |
with gr.Row(): | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, <a href="https://huggingface.co/spaces/Yntec/Diffusion60XX">Diffusion60XX</a> and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! | |
</p> | |
""" | |
) | |
with gr.Tab('Up To Six'): | |
model_choice2 = gr.Dropdown(models, label=f'Choose a model from the {int(len(models))} available! Try clearing the box and typing on it to filter them!', | |
value=models[0], filterable=True) | |
with gr.Group(): | |
txt_input2 = gr.Textbox(label='Your prompt:', lines=1) | |
with gr.Accordion("Advanced", open=False, visible=True): | |
neg_input2 = gr.Textbox(label='Negative prompt:', lines=1) | |
with gr.Row(): | |
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
with gr.Row(): | |
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) | |
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) | |
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) | |
num_images = gr.Slider(1, max_images, value=max_images, step=1, | |
label=f'Number of images (if you want less than {int(max_images)} decrease them slowly until they match the boxes below)') | |
with gr.Row(): | |
gen_button2 = gr.Button(f'Generate up to {int(max_images)} images in up to 3 minutes total', scale=3) | |
#stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1) | |
#gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2) | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 1200px; margin: 0 auto;"> | |
<div> | |
<body> | |
<div class="center"><p style="margin-bottom: 10px;">Scroll down to see more images (they generate in a random order).</p> | |
</div> | |
</body> | |
</div> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
output2 = [gr.Image(label = '', show_download_button=True, elem_classes="output", | |
interactive=False, min_width=80, visible=True, format="png", | |
show_share_button=False, show_label=False, width=128, height=128) for _ in range(max_images)] | |
for i, o in enumerate(output2): | |
img_i = gr.Number(i, visible=False) | |
num_images.change(lambda i, n: gr.update(visible=(i < n)), [img_i, num_images], o, show_progress=False) | |
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit], | |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None, | |
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2, | |
height2, width2, steps2, cfg2, seed2], outputs=[o], | |
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button | |
#stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2]) | |
with gr.Row(): | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, <a href="https://huggingface.co/spaces/Yntec/Diffusion60XX">Diffusion60XX</a> and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! | |
</p> | |
""" | |
) | |
#demo.queue(default_concurrency_limit=200, max_size=200) | |
demo.launch(show_api=False, max_threads=400) |