import gradio as gr from random import randint from all_models import models from externalmod import gr_Interface_load import asyncio import os from threading import RLock lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. def load_fn(models): global models_load models_load = {} for model in models: if model not in models_load.keys(): try: m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) except Exception as error: print(error) m = gr.Interface(lambda: None, ['text'], ['image']) models_load.update({model: m}) load_fn(models) num_models = 1 max_imagesone = 1 max_images = 6 default_models = models[:num_models] inference_timeout = 300 MAX_SEED = 2**32-1 def extend_choices(choices): return choices + (num_models - len(choices)) * ['NA'] def update_imgbox(choices): choices_plus = extend_choices(choices) return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] def gen_fn_original(model_str, prompt): if model_str == 'NA': return None noise = str('') #str(randint(0, 99999999999)) return models_load[model_str](f'{prompt} {noise}') def gen_fnsix(model_str, prompt): if model_str == 'NA': return None noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999)) return models_load[model_str](f'{prompt} {noisesix}') # https://huggingface.co/docs/api-inference/detailed_parameters # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout): from pathlib import Path kwargs = {} if height is not None and height >= 256: kwargs["height"] = height if width is not None and width >= 256: kwargs["width"] = width if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg noise = "" if seed >= 0: kwargs["seed"] = seed else: rand = randint(1, 500) for i in range(rand): noise += " " task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) except (Exception, asyncio.TimeoutError) as e: print(e) print(f"Task timed out: {model_str}") if not task.done(): task.cancel() result = None if task.done() and result is not None: with lock: png_path = "image.png" result.save(png_path) image = str(Path(png_path).resolve()) return image return None def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1): if model_str == 'NA': return None try: loop = asyncio.new_event_loop() result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout)) except (Exception, asyncio.CancelledError) as e: print(e) print(f"Task aborted: {model_str}") result = None finally: loop.close() return result css=""" .gradio-container {max-width: 1200px; margin: 0 auto; !important;} .output { width=128px; height=128px; !important; } .outputone { width=512px; height=512px; !important; } """ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css) as demo: gr.HTML( """

""" ) with gr.Tab('One Image'): model_choice = gr.Dropdown(models, label=f'Choose a model from the {int(len(models))} available! Try clearing the box and typing on it to filter them!', value=models[0], filterable=True) with gr.Group(): txt_input = gr.Textbox(label='Your prompt:', lines=1) with gr.Accordion("Advanced", open=False, visible=True): neg_input = gr.Textbox(label='Negative prompt:', lines=1) with gr.Row(): width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) with gr.Row(): steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False) with gr.Row(): gen_button = gr.Button('Generate', variant='primary', scale=3) #stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1) #gen_button.click(lambda: gr.update(interactive=True), None, stop_button) with gr.Row(): output = [gr.Image(label='', show_download_button=True, elem_classes="outputone", interactive=False, min_width=80, show_share_button=False, format="png", visible=True) for _ in range(max_imagesone)] for i, o in enumerate(output): img_in = gr.Number(i, visible = False) num_imagesone.change(lambda i, n: gr.update(visible = (i < n)), [img_in, num_imagesone], o, show_progress = False) gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None, inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button #stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels=[gen_event]) with gr.Row(): gr.HTML( """