Sang-Hoon Lee commited on
Commit
0164e4a
·
1 Parent(s): 8703869

Upload 70 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +6 -0
  2. LICENSE +21 -0
  3. Mels_preprocess.py +42 -0
  4. README.md +269 -13
  5. activations.py +120 -0
  6. alias_free_torch/__init__.py +6 -0
  7. alias_free_torch/act.py +28 -0
  8. alias_free_torch/filter.py +95 -0
  9. alias_free_torch/resample.py +49 -0
  10. app.py.py +236 -0
  11. attentions.py +313 -0
  12. commons.py +168 -0
  13. denoiser/config.json +28 -0
  14. denoiser/conformer.py +86 -0
  15. denoiser/g_best +3 -0
  16. denoiser/generator.py +193 -0
  17. denoiser/infer.py +33 -0
  18. denoiser/utils.py +55 -0
  19. example/reference_1.txt +1 -0
  20. example/reference_1.wav +0 -0
  21. example/reference_2.txt +1 -0
  22. example/reference_2.wav +0 -0
  23. example/reference_3.txt +1 -0
  24. example/reference_3.wav +0 -0
  25. example/reference_4.txt +1 -0
  26. example/reference_4.wav +0 -0
  27. hierspeechpp_speechsynthesizer.py +716 -0
  28. inference.py +220 -0
  29. inference.sh +12 -0
  30. inference_speechsr.py +94 -0
  31. inference_vc.py +250 -0
  32. inference_vc.sh +11 -0
  33. logs/hierspeechpp_eng_kor/config.json +67 -0
  34. logs/hierspeechpp_eng_kor/hierspeechpp_v1_ckpt.pth +3 -0
  35. logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth +3 -0
  36. logs/ttv_libritts_v1/config.json +55 -0
  37. logs/ttv_libritts_v1/ttv_lt960_ckpt.pth +3 -0
  38. modules.py +534 -0
  39. requirements.txt +15 -0
  40. results/reference_1.wav +0 -0
  41. results/reference_2.wav +0 -0
  42. results/reference_3.wav +0 -0
  43. results/reference_4.wav +0 -0
  44. speechsr24k/G_340000.pth +3 -0
  45. speechsr24k/config.json +49 -0
  46. speechsr24k/speechsr.py +253 -0
  47. speechsr48k/G_100000.pth +3 -0
  48. speechsr48k/config.json +48 -0
  49. speechsr48k/speechsr.py +252 -0
  50. styleencoder.py +91 -0
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ denoiser/g_best filter=lfs diff=lfs merge=lfs -text
37
+ ttv_v1/monotonic_align/build/temp.linux-x86_64-3.7/core.o filter=lfs diff=lfs merge=lfs -text
38
+ ttv_v1/monotonic_align/build/temp.linux-x86_64-3.8/core.o filter=lfs diff=lfs merge=lfs -text
39
+ ttv_v1/monotonic_align/build/temp.linux-x86_64-3.9/core.o filter=lfs diff=lfs merge=lfs -text
40
+ ttv_v1/monotonic_align/monotonic_align/core.cpython-38-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
41
+ ttv_v1/monotonic_align/monotonic_align/core.cpython-39-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Sang-Hoon Lee
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
Mels_preprocess.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ np.random.seed(1234)
4
+
5
+ import torch
6
+ from torchaudio.transforms import MelSpectrogram, Spectrogram, MelScale
7
+
8
+ class MelSpectrogramFixed(torch.nn.Module):
9
+ """In order to remove padding of torchaudio package + add log scale."""
10
+
11
+ def __init__(self, **kwargs):
12
+ super(MelSpectrogramFixed, self).__init__()
13
+ self.torchaudio_backend = MelSpectrogram(**kwargs)
14
+
15
+ def forward(self, x):
16
+ outputs = torch.log(self.torchaudio_backend(x) + 0.001)
17
+
18
+ return outputs[..., :-1]
19
+
20
+ class SpectrogramFixed(torch.nn.Module):
21
+ """In order to remove padding of torchaudio package + add log10 scale."""
22
+
23
+ def __init__(self, **kwargs):
24
+ super(SpectrogramFixed, self).__init__()
25
+ self.torchaudio_backend = Spectrogram(**kwargs)
26
+
27
+ def forward(self, x):
28
+ outputs = self.torchaudio_backend(x)
29
+
30
+ return outputs[..., :-1]
31
+
32
+ class MelfilterFixed(torch.nn.Module):
33
+ """In order to remove padding of torchaudio package + add log10 scale."""
34
+
35
+ def __init__(self, **kwargs):
36
+ super(MelfilterFixed, self).__init__()
37
+ self.torchaudio_backend = MelScale(**kwargs)
38
+
39
+ def forward(self, x):
40
+ outputs = torch.log(self.torchaudio_backend(x) + 0.001)
41
+
42
+ return outputs
README.md CHANGED
@@ -1,13 +1,269 @@
1
- ---
2
- title: HierSpeech TTS
3
- emoji: 📊
4
- colorFrom: indigo
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 4.4.0
8
- app_file: app.py
9
- pinned: false
10
- license: cc-by-nc-4.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation by Hierarchical Variational Inference for Zero-shot Speech Synthesis
2
+ The official implementation of HierSpeech2 | [Paper]() | [Demo page](https://sh-lee-prml.github.io/HierSpeechpp-demo/) | [Checkpoint](https://drive.google.com/drive/folders/1-L_90BlCkbPyKWWHTUjt5Fsu3kz0du0w?usp=sharing) |
3
+
4
+ **Sang-Hoon Lee, Ha-Yeong Choi, Seung-Bin Kim, Seong-Whan Lee**
5
+
6
+ Department of Artificial Intelligence, Korea University, Seoul, Korea
7
+
8
+ ## Abstract
9
+ ![image](https://github.com/sh-lee-prml/HierSpeechpp/assets/56749640/732bc183-bf11-4f32-84a9-e9eab8190e1a)
10
+ <details>
11
+ <summary> [Abs.] Sorry for too long abstract😅 </summary>
12
+
13
+
14
+ Recently, large-scale language models (LLM)-based speech synthesis has shown a significant performance in zero-shot speech synthesis. However, they require a large-scale data and even suffer from the same limitation of previous autoregressive speech models such as slow inference speed and lack of robustness. Following the previous powerful end-to-end text-to-speech framework of VITS (but now that's what we call classical), this paper proposes HierSpeech++, a fast and strong zero-shot speech synthesizer for text-to-speech (TTS) and voice conversion (VC). In the previous our works (HierSpeech and HierVST), we verified that hierarchical speech synthesis frameworks could significantly improve the robustness and expressiveness of the synthetic speech by adopting hierarchical variational autoencoder and leveraging self-supervised speech represenation as an additional linguistic information to bridge an information gap between text and speech. In this work, we once again significantly improve the naturalness and speaker similarity of the synthetic speech even in the zero-shot speech synthesis scenarios. We first introduce multi-audio acoustic encoder for the enhanced acoustics posterior, and adopt a hierarchical adaptive waveform generator with conditional/unconditional generation. Second, we additionally utilize a F0 information and introduce source-filter theory-based multi-path semantic encoder for speaker-agnostic and speaker-related semantic representation. We also leverage hierarchical variational autoencoder to connect multiple representations, and present a BiT-Flow which is a bidirectional normalizing flow Transformer networks with AdaLN-Zero for better speaker adaptation and train-inference mismatch reduction. Without any text transcripts, we only utilize the speech dataset to train the speech synthesizer for data flexibility. For text-to-speech, we introduce text-to-vec (TTV) frameworks to generate a self-supervised speech representation and F0 representation from text representation and prosody prompt. Then, the speech synthesizer of HierSpeech++ generates the speech from generated vector, F0, and voice prompt. In addition, we propose the high-efficient speech super-resolution framework which can upsample the waveform audio from 16 kHz to 48 kHz, and this facilitate training the speech synthesizer in that we can use easily available low-resolution (16 kHz) speech data for scaling-up. The experimental results demonstrated that hierarchical variational autoencoder could be a strong zero-shot speech synthesizer by beating LLM-based models and diffusion-based models for TTS and VC tasks. Furthermore, we also verify the data efficiency in that our model trained with a small dataset still shows a better performance in both naturalness and similarity than other models trained with large-scale dataset. Moreover, we achieve the first human-level quality in zero-shot speech synthesis.
15
+ </details>
16
+
17
+ This repository contains:
18
+
19
+ - 🪐 A PyTorch implementation of HierSpeech++ (TTV, Hierarchical Speech Synthesizer, SpeechSR)
20
+ - ⚡️ Pre-trained HierSpeech++ models trained on LibriTTS (Train-460, Train-960, and more dataset)
21
+
22
+ <!--
23
+ - 💥 A Colab notebook for running pre-trained HierSpeech++ models (Soon..)
24
+ 🛸 A HierSpeech++ training script (Will be released soon)
25
+ -->
26
+ ## Previous Our Works
27
+ - [1] HierSpeech: Bridging the Gap between Text and Speech by Hierarchical Variational Inference using Self-supervised Representations for Speech Synthesis
28
+ - [2] HierVST: Hierarchical Adaptive Zero-shot Voice Style Transfer
29
+
30
+ This paper is an extenstion version of above papers.
31
+
32
+ ## Todo
33
+ ### Hierarchical Speech Synthesizer
34
+ - [x] HierSpeechpp-Backbone
35
+ <!--
36
+ - [ ] HierSpeech-Lite (Fast and Efficient Zero-shot Speech Synthesizer)
37
+ - [ ] HierSinger (Zero-shot Singing Voice Synthesizer)
38
+ - [ ] HierSpeech2-24k-Large-Full (For High-resolutional and High-quality Speech Synthesizer)
39
+ - [ ] HierSpeech2-48k-Large-Full (For Industrial-level High-resolution and High-quality Speech Synthesizer)
40
+ -->
41
+ ### Text-to-Vec (TTV)
42
+ - [x] TTV-v1 (LibriTTS-train-960)
43
+ - [ ] TTV-v2 (We are currently training a multi-lingual TTV model)
44
+ <!--
45
+ - [ ] Hierarchical Text-to-Vec (For Much More Expressive Text-to-Speech)
46
+ -->
47
+ ### Speech Super-resolution (16k --> 24k or 48k)
48
+ - [x] SpeechSR-24k
49
+ - [x] SpeechSR-48k
50
+ ### Training code (Will be released after paper acceptance)
51
+ - [ ] TTV
52
+ - [ ] Hierarchical Speech Synthesizer
53
+ - [ ] SpeechSR
54
+ ## Getting Started
55
+
56
+ ### Pre-requisites
57
+ 0. Pytorch >=1.13 and torchaudio >= 0.13
58
+ 1. Install requirements
59
+ ```
60
+ pip install -r requirements.txt
61
+ ```
62
+ 2. Install Phonemizer
63
+ ```
64
+ pip install phonemizer
65
+ sudo apt-get install espeak-ng
66
+ ```
67
+
68
+ ## Checkpoint [[Download]](https://drive.google.com/drive/folders/1-L_90BlCkbPyKWWHTUjt5Fsu3kz0du0w?usp=sharing)
69
+ ### Hierarchical Speech Synthesizer
70
+ | Model |Sampling Rate|Params|Dataset|Hour|Speaker|Checkpoint|
71
+ |------|:---:|:---:|:---:|:---:|:---:|:---:|
72
+ | HierSpeech2|16 kHz|97M| LibriTTS (train-460) |245|1,151|[[Download]](https://drive.google.com/drive/folders/14FTu0ZWux0zAD7ev4O1l6lKslQcdmebL?usp=sharing)|
73
+ | HierSpeech2|16 kHz|97M| LibriTTS (train-960) |555|2,311|[[Download]](https://drive.google.com/drive/folders/1sFQP-8iS8z9ofCkE7szXNM_JEy4nKg41?usp=drive_link)|
74
+ | HierSpeech2|16 kHz|97M| LibriTTS (train-960), Libri-light (Small, Medium), Expresso, MMS(Kor), NIKL(Kor)|2,796| 7,299 |[[Download]](https://drive.google.com/drive/folders/14jaDUBgrjVA7bCODJqAEirDwRlvJe272?usp=drive_link)|
75
+
76
+ <!--
77
+ | HierSpeech2-Lite|16 kHz|-| LibriTTS (train-960)) |-|
78
+ | HierSpeech2-Lite|16 kHz|-| LibriTTS (train-960) NIKL, AudioBook-Korean) |-|
79
+ | HierSpeech2-Large-CL|16 kHz|200M| LibriTTS (train-960), Libri-Light, NIKL, AudioBook-Korean, Japanese, Chinese, CSS, MLS) |-|
80
+ -->
81
+
82
+ ### TTV
83
+ | Model |Language|Params|Dataset|Hour|Speaker|Checkpoint|
84
+ |------|:---:|:---:|:---:|:---:|:---:|:---:|
85
+ | TTV |Eng|107M| LibriTTS (train-960) |555|2,311|[[Download]](https://drive.google.com/drive/folders/1QiFFdPhqhiLFo8VXc0x7cFHKXArx7Xza?usp=drive_link)|
86
+
87
+
88
+ <!--
89
+ | TTV |Kor|100M| NIKL |114|118|-|
90
+ | TTV |Eng|50M| LibriTTS (train-960) |555|2,311|-|
91
+ | TTV-Large |Eng|100M| LibriTTS (train-960) |555|2,311|-|
92
+ | TTV-Lite |Eng|10M| LibriTTS (train-960) |555|2,311|-|
93
+ | TTV |Kor|50M| NIKL |114|118|-|
94
+ -->
95
+ ### SpeechSR
96
+ | Model |Sampling Rate|Params|Dataset |Checkpoint|
97
+ |------|:---:|:---:|:---:|:---:|
98
+ | SpeechSR-24k |16kHz --> 24 kHz|0.13M| LibriTTS (train-960), MMS (Kor) |[speechsr24k](https://github.com/sh-lee-prml/HierSpeechpp/blob/main/speechsr24k/G_340000.pth)|
99
+ | SpeechSR-48k |16kHz --> 48 kHz|0.13M| MMS (Kor), Expresso (Eng), VCTK (Eng)|[speechsr48k](https://github.com/sh-lee-prml/HierSpeechpp/blob/main/speechsr48k/G_100000.pth)|
100
+
101
+ ## Text-to-Speech
102
+ ```
103
+ sh inference.sh
104
+
105
+ # --ckpt "logs/hierspeechpp_libritts460/hierspeechpp_lt460_ckpt.pth" \ LibriTTS-460
106
+ # --ckpt "logs/hierspeechpp_libritts960/hierspeechpp_lt960_ckpt.pth" \ LibriTTS-960
107
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v1_ckpt.pth" \ Large_v1 epoch 60 (paper version)
108
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \ Large_v2 epoch 110 (08. Nov. 2023)
109
+
110
+ CUDA_VISIBLE_DEVICES=0 python3 inference.py \
111
+ --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \
112
+ --ckpt_text2w2v "logs/ttv_libritts_v1/ttv_lt960_ckpt.pth" \
113
+ --output_dir "tts_results_eng_kor_v2" \
114
+ --noise_scale_vc "0.333" \
115
+ --noise_scale_ttv "0.333" \
116
+ --denoise_ratio "0"
117
+
118
+ ```
119
+ - For better robustness, we recommend a noise_scale of 0.333
120
+ - For better expressiveness, we recommend a noise_scale of 0.667
121
+ - Find your best parameters for your style prompt 😵
122
+ ### Noise Control
123
+ ```
124
+ # without denoiser
125
+ --denoise_ratio "0"
126
+ # with denoiser
127
+ --denoise_ratio "1"
128
+ # Mixup (Recommended 0.6~0.8)
129
+ --denoise_rate "0.8"
130
+ ```
131
+ ## Voice Conversion
132
+ - This method only utilize a hierarchical speech synthesizer for voice conversion.
133
+ ```
134
+ sh inference_vc.sh
135
+
136
+ # --ckpt "logs/hierspeechpp_libritts460/hierspeechpp_lt460_ckpt.pth" \ LibriTTS-460
137
+ # --ckpt "logs/hierspeechpp_libritts960/hierspeechpp_lt960_ckpt.pth" \ LibriTTS-960
138
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v1_ckpt.pth" \ Large_v1 epoch 60 (paper version)
139
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \ Large_v2 epoch 110 (08. Nov. 2023)
140
+
141
+ CUDA_VISIBLE_DEVICES=0 python3 inference_vc.py \
142
+ --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \
143
+ --output_dir "vc_results_eng_kor_v2" \
144
+ --noise_scale_vc "0.333" \
145
+ --noise_scale_ttv "0.333" \
146
+ --denoise_ratio "0"
147
+ ```
148
+ - For better robustness, we recommend a noise_scale of 0.333
149
+ - For better expressiveness, we recommend a noise_scale of 0.667
150
+ - Find your best parameters for your style prompt 😵
151
+ - Voice Conversion is vulnerable to noisy target prompt so we recommend to utilize a denoiser with noisy prompt
152
+ - For noisy source speech, a wrong F0 may be extracted by YAPPT resulting in a quality degradation.
153
+
154
+
155
+ ## Speech Super-resolution
156
+ - SpeechSR-24k and SpeechSR-48 are provided in TTS pipeline. If you want to use SpeechSR only, please refer inference_speechsr.py.
157
+ - If you change the output resolution, add this
158
+ ```
159
+ --output_sr "48000" # Default
160
+ --output_sr "24000" #
161
+ --output_sr "16000" # without super-resolution.
162
+ ```
163
+ ## Speech Denoising for Noise-free Speech Synthesis (Only used in Speaker Encoder during Inference)
164
+ - For denoised style prompt, we utilize a denoiser [(MP-SENet)](https://github.com/yxlu-0102/MP-SENet).
165
+ - When using a long reference audio, there is an out-of-memory issue with this model so we have a plan to learn a memory efficient speech denoiser in the future.
166
+ - If you have a problem, we recommend to use a clean reference audio or denoised audio before TTS pipeline or denoise the audio with cpu (but this will be slow😥).
167
+
168
+ ## TTV-v2
169
+ - TTV-v1 is a simple model which is very slightly modified from VITS. Although this simple TTV could synthesize a speech with high-quality and high speaker similarity, we thought that there is room for improvement in terms of expressiveness such as prosody modeling.
170
+ - For TTV-v2, we modify some components and training process (Model size: 107M --> 278M)
171
+ 1. Intermediate hidden size: 256 --> 384
172
+ 2. Loss masking for wav2vec reconstruction loss (I left out masking the loss for zero-padding sequences😥)
173
+ 3. For long sentence generation, we finetune the model with full LibriTTS-train dataset without data filtering (Decrease the learning rate to 2e-5 with batch size of 8 per gpus)
174
+
175
+ ## GAN VS Diffusion
176
+ <details>
177
+ <summary> [Read More] </summary>
178
+ We think that we could not confirm which is better yet. There are many advatanges for each model so you can utilize each model for your own purposes and each study must be actively conducted simultaneously.
179
+
180
+ ### GAN (Specifically, GAN-based End-to-End Speech Synthesis Models)
181
+ - (pros) Fast Inference Speed
182
+ - (pros) High-quality Audio
183
+ - (cons) Slow Training Speed (Over 7~20 Days)
184
+ - (cons) Lower Voice Style Transfer Performance than Diffusion Models
185
+ - (cons) Perceptually High-quality but Over-smoothed Audio because of Information Bottleneck by the sampling from the low-dimensional Latent Variable
186
+
187
+ ### Diffusion (Diffusion-based Mel-spectrogram Generation Models)
188
+ - (pros) Fast Training Speed (within 3 Days)
189
+ - (pros) High-quality Voice Style Transfer
190
+ - (cons) Slow Inference Speed
191
+ - (cons) Lower Audio quality than End-to-End Speech Synthesis Models
192
+
193
+ ### (In this wors) Our Approaches for GAN-based End-to-End Speech Synthesis Models
194
+ - Improving Voice Style Transfer Performance in End-to-End Speech Synthesis Models for OOD (Zero-shot Voice Style Transfer for Novel Speaker)
195
+ - Improving the Audio Quality beyond Perceptal Quality for Much more High-fidelity Audio Generation
196
+
197
+ ### (Our other works) Diffusion-based Mel-spectrogram Generation Models
198
+ - DDDM-VC: Disentangled Denoising Diffusion Models for High-quality and High-diversity Speech Synthesis Models
199
+ - Diff-hierVC: Hierarhical Diffusion-based Speech Synthesis Model with Diffusion-based Pitch Modeling
200
+
201
+ ### Our Goals
202
+ - Integrating each model for High-quality, High-diversity and High-fidelity Speech Synthesis Models
203
+ </details>
204
+
205
+ ## LLM-based Models
206
+ We hope to compare LLM-based models for zero-shot TTS baselines. However, there is no public-available official implementation of LLM-based TTS models. Unfortunately, unofficial models have a poor performance in zero-shot TTS so we hope they will release their model for a fair comparison and reproducibility and for our speech community. THB I could not stand the inference speed almost 1,000 times slower than e2e models It takes 5 days to synthesize the full sentences of LibriTTS-test subsets. Even, the audio quality is so bad. I hope they will release their official source code soon.
207
+
208
+ In my very personal opinion, VITS is still the best TTS model I have ever seen. But, I acknowledge that LLM-based models have much powerful potential for their creative generative performance from the large-scale dataset but not now.
209
+
210
+ ## Limitation of our work
211
+ - Slow training speed and Relatively large model size (Compared with VITS) --> Future work: Light-weight and Fast training pipeline and much larger model...
212
+ - Could not generate realistic background sound --> Future work: adding audio generation part by disentangling speech and sound.
213
+ - Could not generate a speech from a too long sentence becauase of our training setting. We see increasing max length could improve the model performance. However, we do not have GPUs with 80 GB 😢
214
+ ```
215
+ # Data Filtering for limited computation resource.
216
+ wav_min = 32
217
+ wav_max = 600 # 12s
218
+ text_min = 1
219
+ text_max = 200
220
+ ```
221
+ TTV v2 may reduce this issue significantly...!
222
+
223
+ ## Results [[Download]](https://drive.google.com/drive/folders/1xCrZQy9s5MT38RMQxKAtkoWUgxT5qYYW?usp=sharing)
224
+ We have attached all samples from LibriTTS test-clean and test-other.
225
+
226
+ ## Reference
227
+ <details>
228
+ <summary> [Read More] </summary>
229
+
230
+ ### Our Previous Works
231
+ - HierSpeech/HierSpeech-U for Hierarchical Speech Synthesis Framework: https://openreview.net/forum?id=awdyRVnfQKX
232
+ - HierVST for Baseline Speech Backbone: https://www.isca-speech.org/archive/interspeech_2023/lee23i_interspeech.html
233
+ - DDDM-VC: https://dddm-vc.github.io/
234
+ - Diff-HierVC: https://diff-hiervc.github.io/
235
+
236
+ ### Baseline Model
237
+ - VITS: https://github.com/jaywalnut310/vits
238
+ - NaturalSpeech
239
+ - NANSY for Audio Perturbation: https://github.com/revsic/torch-nansy
240
+ - Speech Resynthesis: https://github.com/facebookresearch/speech-resynthesis
241
+
242
+ ### Waveform Generator for High-quality Audio Generation
243
+ - HiFi-GAN: https://github.com/jik876/hifi-gan
244
+ - BigVGAN for High-quality Generator: https://arxiv.org/abs/2206.04658
245
+ - UnivNET: https://github.com/mindslab-ai/univnet
246
+ - EnCodec: https://github.com/facebookresearch/encodec
247
+
248
+ ### Self-supervised Speech Model
249
+ - Wav2Vec 2.0: https://arxiv.org/abs/2006.11477
250
+ - XLS-R: https://huggingface.co/facebook/wav2vec2-xls-r-300m
251
+ - MMS: https://huggingface.co/facebook/facebook/mms-300m
252
+
253
+ ### Other Large Language Model based Speech Synthesis Model
254
+ - VALL-E & VALL-E-X
255
+ - SPEAR-TTS
256
+ - NaturalSpeech 2
257
+ - Make-a-Voice
258
+ - MEGA-TTS & MEGA-TTS 2
259
+ - UniAudio
260
+
261
+ ### AdaLN-zero
262
+ - Dit: https://github.com/facebookresearch/DiT
263
+
264
+ Thanks for all nice works.
265
+ </details>
266
+
267
+ ## LICENSE
268
+ - Code in this repo: MIT License
269
+ - Model Weights: CC-BY-NC-4.0 license
activations.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch
5
+ from torch import nn, sin, pow
6
+ from torch.nn import Parameter
7
+
8
+
9
+ class Snake(nn.Module):
10
+ '''
11
+ Implementation of a sine-based periodic activation function
12
+ Shape:
13
+ - Input: (B, C, T)
14
+ - Output: (B, C, T), same shape as the input
15
+ Parameters:
16
+ - alpha - trainable parameter
17
+ References:
18
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
19
+ https://arxiv.org/abs/2006.08195
20
+ Examples:
21
+ >>> a1 = snake(256)
22
+ >>> x = torch.randn(256)
23
+ >>> x = a1(x)
24
+ '''
25
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
26
+ '''
27
+ Initialization.
28
+ INPUT:
29
+ - in_features: shape of the input
30
+ - alpha: trainable parameter
31
+ alpha is initialized to 1 by default, higher values = higher-frequency.
32
+ alpha will be trained along with the rest of your model.
33
+ '''
34
+ super(Snake, self).__init__()
35
+ self.in_features = in_features
36
+
37
+ # initialize alpha
38
+ self.alpha_logscale = alpha_logscale
39
+ if self.alpha_logscale: # log scale alphas initialized to zeros
40
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
41
+ else: # linear scale alphas initialized to ones
42
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
43
+
44
+ self.alpha.requires_grad = alpha_trainable
45
+
46
+ self.no_div_by_zero = 0.000000001
47
+
48
+ def forward(self, x):
49
+ '''
50
+ Forward pass of the function.
51
+ Applies the function to the input elementwise.
52
+ Snake ∶= x + 1/a * sin^2 (xa)
53
+ '''
54
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
55
+ if self.alpha_logscale:
56
+ alpha = torch.exp(alpha)
57
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
58
+
59
+ return x
60
+
61
+
62
+ class SnakeBeta(nn.Module):
63
+ '''
64
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
65
+ Shape:
66
+ - Input: (B, C, T)
67
+ - Output: (B, C, T), same shape as the input
68
+ Parameters:
69
+ - alpha - trainable parameter that controls frequency
70
+ - beta - trainable parameter that controls magnitude
71
+ References:
72
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
73
+ https://arxiv.org/abs/2006.08195
74
+ Examples:
75
+ >>> a1 = snakebeta(256)
76
+ >>> x = torch.randn(256)
77
+ >>> x = a1(x)
78
+ '''
79
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
80
+ '''
81
+ Initialization.
82
+ INPUT:
83
+ - in_features: shape of the input
84
+ - alpha - trainable parameter that controls frequency
85
+ - beta - trainable parameter that controls magnitude
86
+ alpha is initialized to 1 by default, higher values = higher-frequency.
87
+ beta is initialized to 1 by default, higher values = higher-magnitude.
88
+ alpha will be trained along with the rest of your model.
89
+ '''
90
+ super(SnakeBeta, self).__init__()
91
+ self.in_features = in_features
92
+
93
+ # initialize alpha
94
+ self.alpha_logscale = alpha_logscale
95
+ if self.alpha_logscale: # log scale alphas initialized to zeros
96
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
97
+ self.beta = Parameter(torch.zeros(in_features) * alpha)
98
+ else: # linear scale alphas initialized to ones
99
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
100
+ self.beta = Parameter(torch.ones(in_features) * alpha)
101
+
102
+ self.alpha.requires_grad = alpha_trainable
103
+ self.beta.requires_grad = alpha_trainable
104
+
105
+ self.no_div_by_zero = 0.000000001
106
+
107
+ def forward(self, x):
108
+ '''
109
+ Forward pass of the function.
110
+ Applies the function to the input elementwise.
111
+ SnakeBeta ∶= x + 1/b * sin^2 (xa)
112
+ '''
113
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
114
+ beta = self.beta.unsqueeze(0).unsqueeze(-1)
115
+ if self.alpha_logscale:
116
+ alpha = torch.exp(alpha)
117
+ beta = torch.exp(beta)
118
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
119
+
120
+ return x
alias_free_torch/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ from .filter import *
5
+ from .resample import *
6
+ from .act import *
alias_free_torch/act.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch.nn as nn
5
+ from .resample import UpSample1d, DownSample1d
6
+
7
+
8
+ class Activation1d(nn.Module):
9
+ def __init__(self,
10
+ activation,
11
+ up_ratio: int = 2,
12
+ down_ratio: int = 2,
13
+ up_kernel_size: int = 12,
14
+ down_kernel_size: int = 12):
15
+ super().__init__()
16
+ self.up_ratio = up_ratio
17
+ self.down_ratio = down_ratio
18
+ self.act = activation
19
+ self.upsample = UpSample1d(up_ratio, up_kernel_size)
20
+ self.downsample = DownSample1d(down_ratio, down_kernel_size)
21
+
22
+ # x: [B,C,T]
23
+ def forward(self, x):
24
+ x = self.upsample(x)
25
+ x = self.act(x)
26
+ x = self.downsample(x)
27
+
28
+ return x
alias_free_torch/filter.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ import math
8
+
9
+ if 'sinc' in dir(torch):
10
+ sinc = torch.sinc
11
+ else:
12
+ # This code is adopted from adefossez's julius.core.sinc under the MIT License
13
+ # https://adefossez.github.io/julius/julius/core.html
14
+ # LICENSE is in incl_licenses directory.
15
+ def sinc(x: torch.Tensor):
16
+ """
17
+ Implementation of sinc, i.e. sin(pi * x) / (pi * x)
18
+ __Warning__: Different to julius.sinc, the input is multiplied by `pi`!
19
+ """
20
+ return torch.where(x == 0,
21
+ torch.tensor(1., device=x.device, dtype=x.dtype),
22
+ torch.sin(math.pi * x) / math.pi / x)
23
+
24
+
25
+ # This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
26
+ # https://adefossez.github.io/julius/julius/lowpass.html
27
+ # LICENSE is in incl_licenses directory.
28
+ def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
29
+ even = (kernel_size % 2 == 0)
30
+ half_size = kernel_size // 2
31
+
32
+ #For kaiser window
33
+ delta_f = 4 * half_width
34
+ A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
35
+ if A > 50.:
36
+ beta = 0.1102 * (A - 8.7)
37
+ elif A >= 21.:
38
+ beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
39
+ else:
40
+ beta = 0.
41
+ window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
42
+
43
+ # ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
44
+ if even:
45
+ time = (torch.arange(-half_size, half_size) + 0.5)
46
+ else:
47
+ time = torch.arange(kernel_size) - half_size
48
+ if cutoff == 0:
49
+ filter_ = torch.zeros_like(time)
50
+ else:
51
+ filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
52
+ # Normalize filter to have sum = 1, otherwise we will have a small leakage
53
+ # of the constant component in the input signal.
54
+ filter_ /= filter_.sum()
55
+ filter = filter_.view(1, 1, kernel_size)
56
+
57
+ return filter
58
+
59
+
60
+ class LowPassFilter1d(nn.Module):
61
+ def __init__(self,
62
+ cutoff=0.5,
63
+ half_width=0.6,
64
+ stride: int = 1,
65
+ padding: bool = True,
66
+ padding_mode: str = 'replicate',
67
+ kernel_size: int = 12):
68
+ # kernel_size should be even number for stylegan3 setup,
69
+ # in this implementation, odd number is also possible.
70
+ super().__init__()
71
+ if cutoff < -0.:
72
+ raise ValueError("Minimum cutoff must be larger than zero.")
73
+ if cutoff > 0.5:
74
+ raise ValueError("A cutoff above 0.5 does not make sense.")
75
+ self.kernel_size = kernel_size
76
+ self.even = (kernel_size % 2 == 0)
77
+ self.pad_left = kernel_size // 2 - int(self.even)
78
+ self.pad_right = kernel_size // 2
79
+ self.stride = stride
80
+ self.padding = padding
81
+ self.padding_mode = padding_mode
82
+ filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
83
+ self.register_buffer("filter", filter)
84
+
85
+ #input [B, C, T]
86
+ def forward(self, x):
87
+ _, C, _ = x.shape
88
+
89
+ if self.padding:
90
+ x = F.pad(x, (self.pad_left, self.pad_right),
91
+ mode=self.padding_mode)
92
+ out = F.conv1d(x, self.filter.expand(C, -1, -1),
93
+ stride=self.stride, groups=C)
94
+
95
+ return out
alias_free_torch/resample.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+ from .filter import LowPassFilter1d
7
+ from .filter import kaiser_sinc_filter1d
8
+
9
+
10
+ class UpSample1d(nn.Module):
11
+ def __init__(self, ratio=2, kernel_size=None):
12
+ super().__init__()
13
+ self.ratio = ratio
14
+ self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
15
+ self.stride = ratio
16
+ self.pad = self.kernel_size // ratio - 1
17
+ self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
18
+ self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
19
+ filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
20
+ half_width=0.6 / ratio,
21
+ kernel_size=self.kernel_size)
22
+ self.register_buffer("filter", filter)
23
+
24
+ # x: [B, C, T]
25
+ def forward(self, x):
26
+ _, C, _ = x.shape
27
+
28
+ x = F.pad(x, (self.pad, self.pad), mode='replicate')
29
+ x = self.ratio * F.conv_transpose1d(
30
+ x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
31
+ x = x[..., self.pad_left:-self.pad_right]
32
+
33
+ return x
34
+
35
+
36
+ class DownSample1d(nn.Module):
37
+ def __init__(self, ratio=2, kernel_size=None):
38
+ super().__init__()
39
+ self.ratio = ratio
40
+ self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
41
+ self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
42
+ half_width=0.6 / ratio,
43
+ stride=ratio,
44
+ kernel_size=self.kernel_size)
45
+
46
+ def forward(self, x):
47
+ xx = self.lowpass(x)
48
+
49
+ return xx
app.py.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import argparse
4
+ import numpy as np
5
+ from scipy.io.wavfile import write
6
+ import torchaudio
7
+ import utils
8
+ from Mels_preprocess import MelSpectrogramFixed
9
+
10
+ from hierspeechpp_speechsynthesizer import (
11
+ SynthesizerTrn
12
+ )
13
+ from ttv_v1.text import text_to_sequence
14
+ from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
15
+ from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
16
+ from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
17
+ from denoiser.generator import MPNet
18
+ from denoiser.infer import denoise
19
+
20
+ import gradio as gr
21
+
22
+ def load_text(fp):
23
+ with open(fp, 'r') as f:
24
+ filelist = [line.strip() for line in f.readlines()]
25
+ return filelist
26
+ def load_checkpoint(filepath, device):
27
+ print(filepath)
28
+ assert os.path.isfile(filepath)
29
+ print("Loading '{}'".format(filepath))
30
+ checkpoint_dict = torch.load(filepath, map_location=device)
31
+ print("Complete.")
32
+ return checkpoint_dict
33
+ def get_param_num(model):
34
+ num_param = sum(param.numel() for param in model.parameters())
35
+ return num_param
36
+ def intersperse(lst, item):
37
+ result = [item] * (len(lst) * 2 + 1)
38
+ result[1::2] = lst
39
+ return result
40
+ def add_blank_token(text):
41
+
42
+ text_norm = intersperse(text, 0)
43
+ text_norm = torch.LongTensor(text_norm)
44
+ return text_norm
45
+
46
+ def tts(text,
47
+ prompt,
48
+ ttv_temperature,
49
+ vc_temperature,
50
+ duratuion_temperature,
51
+ duratuion_length,
52
+ denoise_ratio,
53
+ random_seed):
54
+
55
+ torch.manual_seed(random_seed)
56
+ torch.cuda.manual_seed(random_seed)
57
+ np.random.seed(random_seed)
58
+
59
+ text_len = len(text)
60
+ if text_len > 200:
61
+ raise gr.Error("Text length limited to 200 characters for this demo. Current text length is " + str(text_len))
62
+
63
+ else:
64
+ text = text_to_sequence(str(text), ["english_cleaners2"])
65
+
66
+ token = add_blank_token(text).unsqueeze(0).cuda()
67
+ token_length = torch.LongTensor([token.size(-1)]).cuda()
68
+
69
+ # Prompt load
70
+ # sample_rate, audio = prompt
71
+ # audio = torch.FloatTensor([audio]).cuda()
72
+ # if audio.shape[0] != 1:
73
+ # audio = audio[:1,:]
74
+ # audio = audio / 32768
75
+ audio, sample_rate = torchaudio.load(prompt)
76
+
77
+ # support only single channel
78
+
79
+ # Resampling
80
+ if sample_rate != 16000:
81
+ audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window")
82
+
83
+ # We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
84
+ ori_prompt_len = audio.shape[-1]
85
+ p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
86
+ audio = torch.nn.functional.pad(audio, (0, p), mode='constant').data
87
+
88
+ # If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
89
+ # We will have a plan to replace a memory-efficient denoiser
90
+ if denoise == 0:
91
+ audio = torch.cat([audio.cuda(), audio.cuda()], dim=0)
92
+ else:
93
+ with torch.no_grad():
94
+
95
+ if ori_prompt_len > 80000:
96
+ denoised_audio = []
97
+ for i in range((ori_prompt_len//80000)):
98
+ denoised_audio.append(denoise(audio.squeeze(0).cuda()[i*80000:(i+1)*80000], denoiser, hps_denoiser))
99
+
100
+ denoised_audio.append(denoise(audio.squeeze(0).cuda()[(i+1)*80000:], denoiser, hps_denoiser))
101
+ denoised_audio = torch.cat(denoised_audio, dim=1)
102
+ else:
103
+ denoised_audio = denoise(audio.squeeze(0).cuda(), denoiser, hps_denoiser)
104
+
105
+ audio = torch.cat([audio.cuda(), denoised_audio[:,:audio.shape[-1]]], dim=0)
106
+
107
+ audio = audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
108
+
109
+ if audio.shape[-1]<48000:
110
+ audio = torch.cat([audio,audio,audio,audio,audio], dim=1)
111
+
112
+ src_mel = mel_fn(audio.cuda())
113
+
114
+ src_length = torch.LongTensor([src_mel.size(2)]).to(device)
115
+ src_length2 = torch.cat([src_length,src_length], dim=0)
116
+
117
+ ## TTV (Text --> W2V, F0)
118
+ with torch.no_grad():
119
+ w2v_x, pitch = text2w2v.infer_noise_control(token, token_length, src_mel, src_length2,
120
+ noise_scale=ttv_temperature, noise_scale_w=duratuion_temperature,
121
+ length_scale=duratuion_length, denoise_ratio=denoise_ratio)
122
+ src_length = torch.LongTensor([w2v_x.size(2)]).cuda()
123
+
124
+ pitch[pitch<torch.log(torch.tensor([55]).cuda())] = 0
125
+
126
+ ## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
127
+ converted_audio = \
128
+ net_g.voice_conversion_noise_control(w2v_x, src_length, src_mel, src_length2, pitch, noise_scale=vc_temperature, denoise_ratio=denoise_ratio)
129
+
130
+ converted_audio = speechsr(converted_audio)
131
+
132
+ converted_audio = converted_audio.squeeze()
133
+
134
+ converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
135
+ converted_audio = converted_audio.cpu().numpy().astype('int16')
136
+
137
+ write('output.wav', 48000, converted_audio)
138
+ return 'output.wav'
139
+
140
+ def main():
141
+ print('Initializing Inference Process..')
142
+
143
+ parser = argparse.ArgumentParser()
144
+ parser.add_argument('--input_prompt', default='example/steve-jobs-2005.wav')
145
+ parser.add_argument('--input_txt', default='example/abstract.txt')
146
+ parser.add_argument('--output_dir', default='output')
147
+ parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
148
+ parser.add_argument('--ckpt_text2w2v', '-ct', help='text2w2v checkpoint path', default='./logs/ttv_libritts_v1/ttv_lt960_ckpt.pth')
149
+ parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
150
+ parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
151
+ parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
152
+ parser.add_argument('--scale_norm', type=str, default='max')
153
+ parser.add_argument('--output_sr', type=float, default=48000)
154
+ parser.add_argument('--noise_scale_ttv', type=float,
155
+ default=0.333)
156
+ parser.add_argument('--noise_scale_vc', type=float,
157
+ default=0.333)
158
+ parser.add_argument('--denoise_ratio', type=float,
159
+ default=0.8)
160
+ parser.add_argument('--duration_ratio', type=float,
161
+ default=0.8)
162
+ parser.add_argument('--seed', type=int,
163
+ default=1111)
164
+ a = parser.parse_args()
165
+
166
+ global device, hps, hps_t2w2v,h_sr,h_sr48, hps_denoiser
167
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
168
+
169
+ hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
170
+ hps_t2w2v = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_text2w2v)[0], 'config.json'))
171
+ h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
172
+ h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
173
+ hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
174
+
175
+ global mel_fn, net_g, text2w2v, speechsr, denoiser
176
+
177
+ mel_fn = MelSpectrogramFixed(
178
+ sample_rate=hps.data.sampling_rate,
179
+ n_fft=hps.data.filter_length,
180
+ win_length=hps.data.win_length,
181
+ hop_length=hps.data.hop_length,
182
+ f_min=hps.data.mel_fmin,
183
+ f_max=hps.data.mel_fmax,
184
+ n_mels=hps.data.n_mel_channels,
185
+ window_fn=torch.hann_window
186
+ ).cuda()
187
+
188
+ net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
189
+ hps.train.segment_size // hps.data.hop_length,
190
+ **hps.model).cuda()
191
+ net_g.load_state_dict(torch.load(a.ckpt))
192
+ _ = net_g.eval()
193
+
194
+ text2w2v = Text2W2V(hps.data.filter_length // 2 + 1,
195
+ hps.train.segment_size // hps.data.hop_length,
196
+ **hps_t2w2v.model).cuda()
197
+ text2w2v.load_state_dict(torch.load(a.ckpt_text2w2v))
198
+ text2w2v.eval()
199
+
200
+ speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
201
+ h_sr48.train.segment_size // h_sr48.data.hop_length,
202
+ **h_sr48.model).cuda()
203
+ utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
204
+ speechsr.eval()
205
+
206
+ denoiser = MPNet(hps_denoiser).cuda()
207
+ state_dict = load_checkpoint(a.denoiser_ckpt, device)
208
+ denoiser.load_state_dict(state_dict['generator'])
209
+ denoiser.eval()
210
+
211
+ demo_play = gr.Interface(fn = tts,
212
+ inputs = [gr.Textbox(max_lines=6, label="Input Text", value="HierSpeech is a zero shot speech synthesis model, which can generate high-quality audio", info="Up to 200 characters"),
213
+ gr.Audio(type='filepath', value="./example/3_rick_gt.wav"),
214
+ gr.Slider(0,1,0.333),
215
+ gr.Slider(0,1,0.333),
216
+ gr.Slider(0,1,1.0),
217
+ gr.Slider(0.5,2,1.0),
218
+ gr.Slider(0,1,0),
219
+ gr.Slider(0,9999,1111)],
220
+ outputs = 'audio',
221
+ title = 'HierSpeech++',
222
+ description = '''<div>
223
+ <p style="text-align: left"> HierSpeech++ is a zero-shot speech synthesis model.</p>
224
+ <p style="text-align: left"> Our model is trained with LibriTTS dataset so this model only supports english. We will release a multi-lingual HierSpeech++ soon.</p>
225
+ <p style="text-align: left"> <a href="https://sh-lee-prml.github.io/HierSpeechpp-demo/">[Demo Page]</a> <a href="https://github.com/sh-lee-prml/HierSpeechpp">[Source Code]</a></p>
226
+ </div>''',
227
+ examples=[["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/3_rick_gt.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
228
+ ["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/ex01_whisper_00359.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
229
+ ["Hi there, I'm your new voice clone. Try your best to upload quality audio", "./example/female.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
230
+ ["Hello I'm HierSpeech++", "./example/reference_1.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
231
+ ]
232
+ )
233
+ demo_play.launch(share=True, server_port=8888)
234
+
235
+ if __name__ == '__main__':
236
+ main()
attentions.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,
15
+ **kwargs):
16
+ super().__init__()
17
+ self.hidden_channels = hidden_channels
18
+ self.filter_channels = filter_channels
19
+ self.n_heads = n_heads
20
+ self.n_layers = n_layers
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.window_size = window_size
24
+
25
+ self.drop = nn.Dropout(p_dropout)
26
+ self.attn_layers = nn.ModuleList()
27
+ self.norm_layers_1 = nn.ModuleList()
28
+ self.ffn_layers = nn.ModuleList()
29
+ self.norm_layers_2 = nn.ModuleList()
30
+ for i in range(self.n_layers):
31
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
32
+ window_size=window_size))
33
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
34
+ self.ffn_layers.append(
35
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
36
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
37
+
38
+ def forward(self, x, x_mask):
39
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
40
+ x = x * x_mask
41
+ for i in range(self.n_layers):
42
+ y = self.attn_layers[i](x, x, attn_mask)
43
+ y = self.drop(y)
44
+ x = self.norm_layers_1[i](x + y)
45
+
46
+ y = self.ffn_layers[i](x, x_mask)
47
+ y = self.drop(y)
48
+ x = self.norm_layers_2[i](x + y)
49
+ x = x * x_mask
50
+ return x
51
+
52
+
53
+ class Decoder(nn.Module):
54
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.,
55
+ proximal_bias=False, proximal_init=True, **kwargs):
56
+ super().__init__()
57
+ self.hidden_channels = hidden_channels
58
+ self.filter_channels = filter_channels
59
+ self.n_heads = n_heads
60
+ self.n_layers = n_layers
61
+ self.kernel_size = kernel_size
62
+ self.p_dropout = p_dropout
63
+ self.proximal_bias = proximal_bias
64
+ self.proximal_init = proximal_init
65
+
66
+ self.drop = nn.Dropout(p_dropout)
67
+ self.self_attn_layers = nn.ModuleList()
68
+ self.norm_layers_0 = nn.ModuleList()
69
+ self.encdec_attn_layers = nn.ModuleList()
70
+ self.norm_layers_1 = nn.ModuleList()
71
+ self.ffn_layers = nn.ModuleList()
72
+ self.norm_layers_2 = nn.ModuleList()
73
+ for i in range(self.n_layers):
74
+ self.self_attn_layers.append(
75
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
76
+ proximal_bias=proximal_bias, proximal_init=proximal_init))
77
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
78
+ self.encdec_attn_layers.append(
79
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
80
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
81
+ self.ffn_layers.append(
82
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
83
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
84
+
85
+ def forward(self, x, x_mask, h, h_mask):
86
+ """
87
+ x: decoder input
88
+ h: encoder output
89
+ """
90
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
91
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
92
+ x = x * x_mask
93
+ for i in range(self.n_layers):
94
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_0[i](x + y)
97
+
98
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
99
+ y = self.drop(y)
100
+ x = self.norm_layers_1[i](x + y)
101
+
102
+ y = self.ffn_layers[i](x, x_mask)
103
+ y = self.drop(y)
104
+ x = self.norm_layers_2[i](x + y)
105
+ x = x * x_mask
106
+ return x
107
+
108
+
109
+ class MultiHeadAttention(nn.Module):
110
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True,
111
+ block_length=None, proximal_bias=False, proximal_init=False):
112
+ super().__init__()
113
+ assert channels % n_heads == 0
114
+
115
+ self.channels = channels
116
+ self.out_channels = out_channels
117
+ self.n_heads = n_heads
118
+ self.p_dropout = p_dropout
119
+ self.window_size = window_size
120
+ self.heads_share = heads_share
121
+ self.block_length = block_length
122
+ self.proximal_bias = proximal_bias
123
+ self.proximal_init = proximal_init
124
+ self.attn = None
125
+
126
+ self.k_channels = channels // n_heads
127
+ self.conv_q = nn.Conv1d(channels, channels, 1)
128
+ self.conv_k = nn.Conv1d(channels, channels, 1)
129
+ self.conv_v = nn.Conv1d(channels, channels, 1)
130
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
131
+ self.drop = nn.Dropout(p_dropout)
132
+
133
+ if window_size is not None:
134
+ n_heads_rel = 1 if heads_share else n_heads
135
+ rel_stddev = self.k_channels ** -0.5
136
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
137
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
138
+
139
+ nn.init.xavier_uniform_(self.conv_q.weight)
140
+ nn.init.xavier_uniform_(self.conv_k.weight)
141
+ nn.init.xavier_uniform_(self.conv_v.weight)
142
+ if proximal_init:
143
+ with torch.no_grad():
144
+ self.conv_k.weight.copy_(self.conv_q.weight)
145
+ self.conv_k.bias.copy_(self.conv_q.bias)
146
+
147
+ def forward(self, x, c, attn_mask=None):
148
+ q = self.conv_q(x)
149
+ k = self.conv_k(c)
150
+ v = self.conv_v(c)
151
+
152
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
153
+
154
+ x = self.conv_o(x)
155
+ return x
156
+
157
+ def attention(self, query, key, value, mask=None):
158
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
159
+ b, d, t_s, t_t = (*key.size(), query.size(2))
160
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
161
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
162
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
163
+
164
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
165
+ if self.window_size is not None:
166
+ assert t_s == t_t, "Relative attention is only available for self-attention."
167
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
168
+ rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
169
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
170
+ scores = scores + scores_local
171
+ if self.proximal_bias:
172
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
173
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
174
+ if mask is not None:
175
+ scores = scores.masked_fill(mask == 0, -1e4)
176
+ if self.block_length is not None:
177
+ assert t_s == t_t, "Local attention is only available for self-attention."
178
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
179
+ scores = scores.masked_fill(block_mask == 0, -1e4)
180
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
181
+ p_attn = self.drop(p_attn)
182
+ output = torch.matmul(p_attn, value)
183
+ if self.window_size is not None:
184
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
185
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
186
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
187
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
188
+ return output, p_attn
189
+
190
+ def _matmul_with_relative_values(self, x, y):
191
+ """
192
+ x: [b, h, l, m]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, d]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0))
197
+ return ret
198
+
199
+ def _matmul_with_relative_keys(self, x, y):
200
+ """
201
+ x: [b, h, l, d]
202
+ y: [h or 1, m, d]
203
+ ret: [b, h, l, m]
204
+ """
205
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
206
+ return ret
207
+
208
+ def _get_relative_embeddings(self, relative_embeddings, length):
209
+ max_relative_position = 2 * self.window_size + 1
210
+ # Pad first before slice to avoid using cond ops.
211
+ pad_length = max(length - (self.window_size + 1), 0)
212
+ slice_start_position = max((self.window_size + 1) - length, 0)
213
+ slice_end_position = slice_start_position + 2 * length - 1
214
+ if pad_length > 0:
215
+ padded_relative_embeddings = F.pad(
216
+ relative_embeddings,
217
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
218
+ else:
219
+ padded_relative_embeddings = relative_embeddings
220
+ used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
221
+ return used_relative_embeddings
222
+
223
+ def _relative_position_to_absolute_position(self, x):
224
+ """
225
+ x: [b, h, l, 2*l-1]
226
+ ret: [b, h, l, l]
227
+ """
228
+ batch, heads, length, _ = x.size()
229
+ # Concat columns of pad to shift from relative to absolute indexing.
230
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
231
+
232
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
233
+ x_flat = x.view([batch, heads, length * 2 * length])
234
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
235
+
236
+ # Reshape and slice out the padded elements.
237
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:]
238
+ return x_final
239
+
240
+ def _absolute_position_to_relative_position(self, x):
241
+ """
242
+ x: [b, h, l, l]
243
+ ret: [b, h, l, 2*l-1]
244
+ """
245
+ batch, heads, length, _ = x.size()
246
+ # padd along column
247
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
248
+ x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
249
+ # add 0's in the beginning that will skew the elements after reshape
250
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
251
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
252
+ return x_final
253
+
254
+ def _attention_bias_proximal(self, length):
255
+ """Bias for self-attention to encourage attention to close positions.
256
+ Args:
257
+ length: an integer scalar.
258
+ Returns:
259
+ a Tensor with shape [1, 1, length, length]
260
+ """
261
+ r = torch.arange(length, dtype=torch.float32)
262
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
263
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
264
+
265
+
266
+ class FFN(nn.Module):
267
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None,
268
+ causal=False):
269
+ super().__init__()
270
+ self.in_channels = in_channels
271
+ self.out_channels = out_channels
272
+ self.filter_channels = filter_channels
273
+ self.kernel_size = kernel_size
274
+ self.p_dropout = p_dropout
275
+ self.activation = activation
276
+ self.causal = causal
277
+
278
+ if causal:
279
+ self.padding = self._causal_padding
280
+ else:
281
+ self.padding = self._same_padding
282
+
283
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
284
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
285
+ self.drop = nn.Dropout(p_dropout)
286
+
287
+ def forward(self, x, x_mask):
288
+ x = self.conv_1(self.padding(x * x_mask))
289
+ if self.activation == "gelu":
290
+ x = x * torch.sigmoid(1.702 * x)
291
+ else:
292
+ x = torch.relu(x)
293
+ x = self.drop(x)
294
+ x = self.conv_2(self.padding(x * x_mask))
295
+ return x * x_mask
296
+
297
+ def _causal_padding(self, x):
298
+ if self.kernel_size == 1:
299
+ return x
300
+ pad_l = self.kernel_size - 1
301
+ pad_r = 0
302
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
303
+ x = F.pad(x, commons.convert_pad_shape(padding))
304
+ return x
305
+
306
+ def _same_padding(self, x):
307
+ if self.kernel_size == 1:
308
+ return x
309
+ pad_l = (self.kernel_size - 1) // 2
310
+ pad_r = self.kernel_size // 2
311
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
312
+ x = F.pad(x, commons.convert_pad_shape(padding))
313
+ return x
commons.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+ def slice_segments_audio(x, ids_str, segment_size=4):
57
+ ret = torch.zeros_like(x[:, :segment_size])
58
+ for i in range(x.size(0)):
59
+ idx_str = ids_str[i]
60
+ idx_end = idx_str + segment_size
61
+ ret[i] = x[i, idx_str:idx_end]
62
+ return ret
63
+
64
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
65
+ b, d, t = x.size()
66
+ if x_lengths is None:
67
+ x_lengths = t
68
+ ids_str_max = x_lengths - segment_size + 1
69
+ ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(dtype=torch.long)
70
+ ret = slice_segments(x, ids_str, segment_size)
71
+ return ret, ids_str
72
+
73
+
74
+ def get_timing_signal_1d(
75
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
76
+ position = torch.arange(length, dtype=torch.float)
77
+ num_timescales = channels // 2
78
+ log_timescale_increment = (
79
+ math.log(float(max_timescale) / float(min_timescale)) /
80
+ (num_timescales - 1))
81
+ inv_timescales = min_timescale * torch.exp(
82
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
83
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
84
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
85
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
86
+ signal = signal.view(1, channels, length)
87
+ return signal
88
+
89
+
90
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
91
+ b, channels, length = x.size()
92
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
93
+ return x + signal.to(dtype=x.dtype, device=x.device)
94
+
95
+
96
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
97
+ b, channels, length = x.size()
98
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
99
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
100
+
101
+
102
+ def subsequent_mask(length):
103
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
104
+ return mask
105
+
106
+
107
+ @torch.jit.script
108
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
109
+ n_channels_int = n_channels[0]
110
+ in_act = input_a + input_b
111
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
112
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
113
+ acts = t_act * s_act
114
+ return acts
115
+
116
+
117
+ def convert_pad_shape(pad_shape):
118
+ l = pad_shape[::-1]
119
+ pad_shape = [item for sublist in l for item in sublist]
120
+ return pad_shape
121
+
122
+
123
+ def shift_1d(x):
124
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
125
+ return x
126
+
127
+
128
+ def sequence_mask(length, max_length=None):
129
+ if max_length is None:
130
+ max_length = length.max()
131
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
132
+ return x.unsqueeze(0) < length.unsqueeze(1)
133
+
134
+
135
+ def generate_path(duration, mask):
136
+ """
137
+ duration: [b, 1, t_x]
138
+ mask: [b, 1, t_y, t_x]
139
+ """
140
+ device = duration.device
141
+
142
+ b, _, t_y, t_x = mask.shape
143
+ cum_duration = torch.cumsum(duration, -1)
144
+
145
+ cum_duration_flat = cum_duration.view(b * t_x)
146
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
147
+ path = path.view(b, t_x, t_y)
148
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
149
+ path = path.unsqueeze(1).transpose(2,3) * mask
150
+ return path
151
+
152
+
153
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
154
+ if isinstance(parameters, torch.Tensor):
155
+ parameters = [parameters]
156
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
157
+ norm_type = float(norm_type)
158
+ if clip_value is not None:
159
+ clip_value = float(clip_value)
160
+
161
+ total_norm = 0
162
+ for p in parameters:
163
+ param_norm = p.grad.data.norm(norm_type)
164
+ total_norm += param_norm.item() ** norm_type
165
+ if clip_value is not None:
166
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
167
+ total_norm = total_norm ** (1. / norm_type)
168
+ return total_norm
denoiser/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "num_gpus": 0,
3
+ "batch_size": 4,
4
+ "learning_rate": 0.0005,
5
+ "adam_b1": 0.8,
6
+ "adam_b2": 0.99,
7
+ "lr_decay": 0.99,
8
+ "seed": 1234,
9
+
10
+ "dense_channel": 64,
11
+ "compress_factor": 0.3,
12
+ "num_tsconformers": 4,
13
+ "beta": 2.0,
14
+
15
+ "sampling_rate": 16000,
16
+ "segment_size": 32000,
17
+ "n_fft": 400,
18
+ "hop_size": 100,
19
+ "win_size": 400,
20
+
21
+ "num_workers": 4,
22
+
23
+ "dist_config": {
24
+ "dist_backend": "nccl",
25
+ "dist_url": "tcp://localhost:54321",
26
+ "world_size": 1
27
+ }
28
+ }
denoiser/conformer.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from einops.layers.torch import Rearrange
4
+
5
+ def get_padding(kernel_size, dilation=1):
6
+ return int((kernel_size*dilation - dilation)/2)
7
+
8
+ class FeedForwardModule(nn.Module):
9
+ def __init__(self, dim, mult=4, dropout=0):
10
+ super(FeedForwardModule, self).__init__()
11
+ self.ffm = nn.Sequential(
12
+ nn.LayerNorm(dim),
13
+ nn.Linear(dim, dim * mult),
14
+ nn.SiLU(),
15
+ nn.Dropout(dropout),
16
+ nn.Linear(dim * mult, dim),
17
+ nn.Dropout(dropout)
18
+ )
19
+
20
+ def forward(self, x):
21
+ return self.ffm(x)
22
+
23
+
24
+ class ConformerConvModule(nn.Module):
25
+ def __init__(self, dim, expansion_factor=2, kernel_size=31, dropout=0.):
26
+ super(ConformerConvModule, self).__init__()
27
+ inner_dim = dim * expansion_factor
28
+ self.ccm = nn.Sequential(
29
+ nn.LayerNorm(dim),
30
+ Rearrange('b n c -> b c n'),
31
+ nn.Conv1d(dim, inner_dim*2, 1),
32
+ nn.GLU(dim=1),
33
+ nn.Conv1d(inner_dim, inner_dim, kernel_size=kernel_size,
34
+ padding=get_padding(kernel_size), groups=inner_dim), # DepthWiseConv1d
35
+ nn.BatchNorm1d(inner_dim),
36
+ nn.SiLU(),
37
+ nn.Conv1d(inner_dim, dim, 1),
38
+ Rearrange('b c n -> b n c'),
39
+ nn.Dropout(dropout)
40
+ )
41
+
42
+ def forward(self, x):
43
+ return self.ccm(x)
44
+
45
+
46
+ class AttentionModule(nn.Module):
47
+ def __init__(self, dim, n_head=8, dropout=0.):
48
+ super(AttentionModule, self).__init__()
49
+ self.attn = nn.MultiheadAttention(dim, n_head, dropout=dropout)
50
+ self.layernorm = nn.LayerNorm(dim)
51
+
52
+ def forward(self, x, attn_mask=None, key_padding_mask=None):
53
+ x = self.layernorm(x)
54
+ x, _ = self.attn(x, x, x,
55
+ attn_mask=attn_mask,
56
+ key_padding_mask=key_padding_mask)
57
+ return x
58
+
59
+
60
+ class ConformerBlock(nn.Module):
61
+ def __init__(self, dim, n_head=8, ffm_mult=4, ccm_expansion_factor=2, ccm_kernel_size=31,
62
+ ffm_dropout=0., attn_dropout=0., ccm_dropout=0.):
63
+ super(ConformerBlock, self).__init__()
64
+ self.ffm1 = FeedForwardModule(dim, ffm_mult, dropout=ffm_dropout)
65
+ self.attn = AttentionModule(dim, n_head, dropout=attn_dropout)
66
+ self.ccm = ConformerConvModule(dim, ccm_expansion_factor, ccm_kernel_size, dropout=ccm_dropout)
67
+ self.ffm2 = FeedForwardModule(dim, ffm_mult, dropout=ffm_dropout)
68
+ self.post_norm = nn.LayerNorm(dim)
69
+
70
+ def forward(self, x):
71
+ x = x + 0.5 * self.ffm1(x)
72
+ x = x + self.attn(x)
73
+ x = x + self.ccm(x)
74
+ x = x + 0.5 * self.ffm2(x)
75
+ x = self.post_norm(x)
76
+ return x
77
+
78
+
79
+ def main():
80
+ x = torch.ones(10, 100, 64)
81
+ conformer = ConformerBlock(dim=64)
82
+ print(conformer(x))
83
+
84
+
85
+ if __name__ == '__main__':
86
+ main()
denoiser/g_best ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0088cd06068a97b97cc13fe10fe155ea5c24beea79564b2162fab22a79dc9dc5
3
+ size 8350488
denoiser/generator.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+ from denoiser.conformer import ConformerBlock
6
+ from denoiser.utils import get_padding_2d, LearnableSigmoid_2d
7
+ from pesq import pesq
8
+ from joblib import Parallel, delayed
9
+
10
+ class DenseBlock(nn.Module):
11
+ def __init__(self, h, kernel_size=(3, 3), depth=4):
12
+ super(DenseBlock, self).__init__()
13
+ self.h = h
14
+ self.depth = depth
15
+ self.dense_block = nn.ModuleList([])
16
+ for i in range(depth):
17
+ dil = 2 ** i
18
+ dense_conv = nn.Sequential(
19
+ nn.Conv2d(h.dense_channel*(i+1), h.dense_channel, kernel_size, dilation=(dil, 1),
20
+ padding=get_padding_2d(kernel_size, (dil, 1))),
21
+ nn.InstanceNorm2d(h.dense_channel, affine=True),
22
+ nn.PReLU(h.dense_channel)
23
+ )
24
+ self.dense_block.append(dense_conv)
25
+
26
+ def forward(self, x):
27
+ skip = x
28
+ for i in range(self.depth):
29
+ x = self.dense_block[i](skip)
30
+ skip = torch.cat([x, skip], dim=1)
31
+ return x
32
+
33
+
34
+ class DenseEncoder(nn.Module):
35
+ def __init__(self, h, in_channel):
36
+ super(DenseEncoder, self).__init__()
37
+ self.h = h
38
+ self.dense_conv_1 = nn.Sequential(
39
+ nn.Conv2d(in_channel, h.dense_channel, (1, 1)),
40
+ nn.InstanceNorm2d(h.dense_channel, affine=True),
41
+ nn.PReLU(h.dense_channel))
42
+
43
+ self.dense_block = DenseBlock(h, depth=4) # [b, h.dense_channel, ndim_time, h.n_fft//2+1]
44
+
45
+ self.dense_conv_2 = nn.Sequential(
46
+ nn.Conv2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)),
47
+ nn.InstanceNorm2d(h.dense_channel, affine=True),
48
+ nn.PReLU(h.dense_channel))
49
+
50
+ def forward(self, x):
51
+ x = self.dense_conv_1(x) # [b, 64, T, F]
52
+ x = self.dense_block(x) # [b, 64, T, F]
53
+ x = self.dense_conv_2(x) # [b, 64, T, F//2]
54
+ return x
55
+
56
+
57
+ class MaskDecoder(nn.Module):
58
+ def __init__(self, h, out_channel=1):
59
+ super(MaskDecoder, self).__init__()
60
+ self.dense_block = DenseBlock(h, depth=4)
61
+ self.mask_conv = nn.Sequential(
62
+ nn.ConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)),
63
+ nn.Conv2d(h.dense_channel, out_channel, (1, 1)),
64
+ nn.InstanceNorm2d(out_channel, affine=True),
65
+ nn.PReLU(out_channel),
66
+ nn.Conv2d(out_channel, out_channel, (1, 1))
67
+ )
68
+ self.lsigmoid = LearnableSigmoid_2d(h.n_fft//2+1, beta=h.beta)
69
+
70
+ def forward(self, x):
71
+ x = self.dense_block(x)
72
+ x = self.mask_conv(x)
73
+ x = x.permute(0, 3, 2, 1).squeeze(-1)
74
+ x = self.lsigmoid(x).permute(0, 2, 1).unsqueeze(1)
75
+ return x
76
+
77
+
78
+ class PhaseDecoder(nn.Module):
79
+ def __init__(self, h, out_channel=1):
80
+ super(PhaseDecoder, self).__init__()
81
+ self.dense_block = DenseBlock(h, depth=4)
82
+ self.phase_conv = nn.Sequential(
83
+ nn.ConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)),
84
+ nn.InstanceNorm2d(h.dense_channel, affine=True),
85
+ nn.PReLU(h.dense_channel)
86
+ )
87
+ self.phase_conv_r = nn.Conv2d(h.dense_channel, out_channel, (1, 1))
88
+ self.phase_conv_i = nn.Conv2d(h.dense_channel, out_channel, (1, 1))
89
+
90
+ def forward(self, x):
91
+ x = self.dense_block(x)
92
+ x = self.phase_conv(x)
93
+ x_r = self.phase_conv_r(x)
94
+ x_i = self.phase_conv_i(x)
95
+ x = torch.atan2(x_i, x_r)
96
+ return x
97
+
98
+
99
+ class TSConformerBlock(nn.Module):
100
+ def __init__(self, h):
101
+ super(TSConformerBlock, self).__init__()
102
+ self.h = h
103
+ self.time_conformer = ConformerBlock(dim=h.dense_channel, n_head=4, ccm_kernel_size=31,
104
+ ffm_dropout=0.2, attn_dropout=0.2)
105
+ self.freq_conformer = ConformerBlock(dim=h.dense_channel, n_head=4, ccm_kernel_size=31,
106
+ ffm_dropout=0.2, attn_dropout=0.2)
107
+
108
+ def forward(self, x):
109
+ b, c, t, f = x.size()
110
+ x = x.permute(0, 3, 2, 1).contiguous().view(b*f, t, c)
111
+ x = self.time_conformer(x) + x
112
+ x = x.view(b, f, t, c).permute(0, 2, 1, 3).contiguous().view(b*t, f, c)
113
+ x = self.freq_conformer(x) + x
114
+ x = x.view(b, t, f, c).permute(0, 3, 1, 2)
115
+ return x
116
+
117
+
118
+ class MPNet(nn.Module):
119
+ def __init__(self, h, num_tscblocks=4):
120
+ super(MPNet, self).__init__()
121
+ self.h = h
122
+ self.num_tscblocks = num_tscblocks
123
+ self.dense_encoder = DenseEncoder(h, in_channel=2)
124
+
125
+ self.TSConformer = nn.ModuleList([])
126
+ for i in range(num_tscblocks):
127
+ self.TSConformer.append(TSConformerBlock(h))
128
+
129
+ self.mask_decoder = MaskDecoder(h, out_channel=1)
130
+ self.phase_decoder = PhaseDecoder(h, out_channel=1)
131
+
132
+ def forward(self, noisy_mag, noisy_pha): # [B, F, T]
133
+ noisy_mag = noisy_mag.unsqueeze(-1).permute(0, 3, 2, 1) # [B, 1, T, F]
134
+ noisy_pha = noisy_pha.unsqueeze(-1).permute(0, 3, 2, 1) # [B, 1, T, F]
135
+ x = torch.cat((noisy_mag, noisy_pha), dim=1) # [B, 2, T, F]
136
+ x = self.dense_encoder(x)
137
+
138
+ for i in range(self.num_tscblocks):
139
+ x = self.TSConformer[i](x)
140
+
141
+ denoised_mag = (noisy_mag * self.mask_decoder(x)).permute(0, 3, 2, 1).squeeze(-1)
142
+ denoised_pha = self.phase_decoder(x).permute(0, 3, 2, 1).squeeze(-1)
143
+ denoised_com = torch.stack((denoised_mag*torch.cos(denoised_pha),
144
+ denoised_mag*torch.sin(denoised_pha)), dim=-1)
145
+
146
+ return denoised_mag, denoised_pha, denoised_com
147
+
148
+
149
+ def phase_losses(phase_r, phase_g, h):
150
+
151
+ dim_freq = h.n_fft // 2 + 1
152
+ dim_time = phase_r.size(-1)
153
+
154
+ gd_matrix = (torch.triu(torch.ones(dim_freq, dim_freq), diagonal=1) - torch.triu(torch.ones(dim_freq, dim_freq), diagonal=2) - torch.eye(dim_freq)).to(phase_g.device)
155
+ gd_r = torch.matmul(phase_r.permute(0, 2, 1), gd_matrix)
156
+ gd_g = torch.matmul(phase_g.permute(0, 2, 1), gd_matrix)
157
+
158
+ iaf_matrix = (torch.triu(torch.ones(dim_time, dim_time), diagonal=1) - torch.triu(torch.ones(dim_time, dim_time), diagonal=2) - torch.eye(dim_time)).to(phase_g.device)
159
+ iaf_r = torch.matmul(phase_r, iaf_matrix)
160
+ iaf_g = torch.matmul(phase_g, iaf_matrix)
161
+
162
+ ip_loss = torch.mean(anti_wrapping_function(phase_r-phase_g))
163
+ gd_loss = torch.mean(anti_wrapping_function(gd_r-gd_g))
164
+ iaf_loss = torch.mean(anti_wrapping_function(iaf_r-iaf_g))
165
+
166
+ return ip_loss, gd_loss, iaf_loss
167
+
168
+
169
+ def anti_wrapping_function(x):
170
+
171
+ return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi)
172
+
173
+
174
+ def pesq_score(utts_r, utts_g, h):
175
+
176
+ pesq_score = Parallel(n_jobs=30)(delayed(eval_pesq)(
177
+ utts_r[i].squeeze().cpu().numpy(),
178
+ utts_g[i].squeeze().cpu().numpy(),
179
+ h.sampling_rate)
180
+ for i in range(len(utts_r)))
181
+ pesq_score = np.mean(pesq_score)
182
+
183
+ return pesq_score
184
+
185
+
186
+ def eval_pesq(clean_utt, esti_utt, sr):
187
+ try:
188
+ pesq_score = pesq(sr, clean_utt, esti_utt)
189
+ except:
190
+ # error can happen due to silent period
191
+ pesq_score = -1
192
+
193
+ return pesq_score
denoiser/infer.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+
4
+ def denoise(noisy_wav, model, hps):
5
+ norm_factor = torch.sqrt(len(noisy_wav) / torch.sum(noisy_wav ** 2.0)).to(noisy_wav.device)
6
+ noisy_wav = (noisy_wav * norm_factor).unsqueeze(0)
7
+ noisy_amp, noisy_pha, noisy_com = mag_pha_stft(noisy_wav, hps.n_fft, hps.hop_size, hps.win_size, hps.compress_factor)
8
+ amp_g, pha_g, com_g = model(noisy_amp, noisy_pha)
9
+ audio_g = mag_pha_istft(amp_g, pha_g, hps.n_fft, hps.hop_size, hps.win_size, hps.compress_factor)
10
+ audio_g = audio_g / norm_factor
11
+ return audio_g
12
+
13
+ def mag_pha_stft(y, n_fft, hop_size, win_size, compress_factor=1.0, center=True):
14
+
15
+ hann_window = torch.hann_window(win_size).to(y.device)
16
+ stft_spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window,
17
+ center=center, pad_mode='reflect', normalized=False, return_complex=True)
18
+ mag = torch.abs(stft_spec)
19
+ pha = torch.angle(stft_spec)
20
+ # Magnitude Compression
21
+ mag = torch.pow(mag, compress_factor)
22
+ com = torch.stack((mag*torch.cos(pha), mag*torch.sin(pha)), dim=-1)
23
+
24
+ return mag, pha, com
25
+
26
+ def mag_pha_istft(mag, pha, n_fft, hop_size, win_size, compress_factor=1.0, center=True):
27
+ # Magnitude Decompression
28
+ mag = torch.pow(mag, (1.0/compress_factor))
29
+ com = torch.complex(mag*torch.cos(pha), mag*torch.sin(pha))
30
+ hann_window = torch.hann_window(win_size).to(com.device)
31
+ wav = torch.istft(com, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center)
32
+
33
+ return wav
denoiser/utils.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ def get_padding(kernel_size, dilation=1):
7
+ return int((kernel_size*dilation - dilation)/2)
8
+
9
+
10
+ def get_padding_2d(kernel_size, dilation=(1, 1)):
11
+ return (int((kernel_size[0]*dilation[0] - dilation[0])/2), int((kernel_size[1]*dilation[1] - dilation[1])/2))
12
+
13
+
14
+ def load_checkpoint(filepath, device):
15
+ assert os.path.isfile(filepath)
16
+ print("Loading '{}'".format(filepath))
17
+ checkpoint_dict = torch.load(filepath, map_location=device)
18
+ print("Complete.")
19
+ return checkpoint_dict
20
+
21
+
22
+ def save_checkpoint(filepath, obj):
23
+ print("Saving checkpoint to {}".format(filepath))
24
+ torch.save(obj, filepath)
25
+ print("Complete.")
26
+
27
+
28
+ def scan_checkpoint(cp_dir, prefix):
29
+ pattern = os.path.join(cp_dir, prefix + '????????')
30
+ cp_list = glob.glob(pattern)
31
+ if len(cp_list) == 0:
32
+ return None
33
+ return sorted(cp_list)[-1]
34
+
35
+
36
+ class LearnableSigmoid_1d(nn.Module):
37
+ def __init__(self, in_features, beta=1):
38
+ super().__init__()
39
+ self.beta = beta
40
+ self.slope = nn.Parameter(torch.ones(in_features))
41
+ self.slope.requiresGrad = True
42
+
43
+ def forward(self, x):
44
+ return self.beta * torch.sigmoid(self.slope * x)
45
+
46
+
47
+ class LearnableSigmoid_2d(nn.Module):
48
+ def __init__(self, in_features, beta=1):
49
+ super().__init__()
50
+ self.beta = beta
51
+ self.slope = nn.Parameter(torch.ones(in_features, 1))
52
+ self.slope.requiresGrad = True
53
+
54
+ def forward(self, x):
55
+ return self.beta * torch.sigmoid(self.slope * x)
example/reference_1.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ And lay me down in my cold bed and leave my shining lot.
example/reference_1.wav ADDED
Binary file (96 kB). View file
 
example/reference_2.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Yea, his honourable worship is within, but he hath a godly minister or two with him, and likewise a leech.
example/reference_2.wav ADDED
Binary file (96 kB). View file
 
example/reference_3.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ The army found the people in poverty and left them in comparative wealth.
example/reference_3.wav ADDED
Binary file (96 kB). View file
 
example/reference_4.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Thus did this humane and right minded father comfort his unhappy daughter, and her mother embracing her again, did all she could to soothe her feelings.
example/reference_4.wav ADDED
Binary file (96 kB). View file
 
hierspeechpp_speechsynthesizer.py ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+ import modules
5
+ import attentions
6
+
7
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
8
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
9
+ from commons import init_weights, get_padding
10
+
11
+ import torchaudio
12
+ from einops import rearrange
13
+ import transformers
14
+ import math
15
+ from styleencoder import StyleEncoder
16
+ import commons
17
+
18
+ from alias_free_torch import *
19
+ import activations
20
+
21
+ class Wav2vec2(torch.nn.Module):
22
+ def __init__(self, layer=7, w2v='mms'):
23
+
24
+ """we use the intermediate features of mms-300m.
25
+ More specifically, we used the output from the 7th layer of the 24-layer transformer encoder.
26
+ """
27
+ super().__init__()
28
+
29
+ if w2v == 'mms':
30
+ self.wav2vec2 = transformers.Wav2Vec2ForPreTraining.from_pretrained("facebook/mms-300m")
31
+ else:
32
+ self.wav2vec2 = transformers.Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-xls-r-300m")
33
+
34
+ for param in self.wav2vec2.parameters():
35
+ param.requires_grad = False
36
+ param.grad = None
37
+ self.wav2vec2.eval()
38
+ self.feature_layer = layer
39
+
40
+ @torch.no_grad()
41
+ def forward(self, x):
42
+ """
43
+ Args:
44
+ x: torch.Tensor of shape (B x t)
45
+ Returns:
46
+ y: torch.Tensor of shape(B x C x t)
47
+ """
48
+ outputs = self.wav2vec2(x.squeeze(1), output_hidden_states=True)
49
+ y = outputs.hidden_states[self.feature_layer] # B x t x C(1024)
50
+ y = y.permute((0, 2, 1)) # B x t x C -> B x C x t
51
+ return y
52
+
53
+ class ResidualCouplingBlock_Transformer(nn.Module):
54
+ def __init__(self,
55
+ channels,
56
+ hidden_channels,
57
+ kernel_size,
58
+ dilation_rate,
59
+ n_layers=3,
60
+ n_flows=4,
61
+ gin_channels=0):
62
+ super().__init__()
63
+ self.channels = channels
64
+ self.hidden_channels = hidden_channels
65
+ self.kernel_size = kernel_size
66
+ self.dilation_rate = dilation_rate
67
+ self.n_layers = n_layers
68
+ self.n_flows = n_flows
69
+ self.gin_channels = gin_channels
70
+ self.cond_block = torch.nn.Sequential(torch.nn.Linear(gin_channels, 4 * hidden_channels),
71
+ nn.SiLU(), torch.nn.Linear(4 * hidden_channels, hidden_channels))
72
+
73
+ self.flows = nn.ModuleList()
74
+ for i in range(n_flows):
75
+ self.flows.append(modules.ResidualCouplingLayer_Transformer_simple(channels, hidden_channels, kernel_size, dilation_rate, n_layers, mean_only=True))
76
+ self.flows.append(modules.Flip())
77
+
78
+ def forward(self, x, x_mask, g=None, reverse=False):
79
+
80
+ g = self.cond_block(g.squeeze(2))
81
+
82
+ if not reverse:
83
+ for flow in self.flows:
84
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
85
+ else:
86
+ for flow in reversed(self.flows):
87
+ x = flow(x, x_mask, g=g, reverse=reverse)
88
+ return x
89
+
90
+ class PosteriorAudioEncoder(nn.Module):
91
+ def __init__(self,
92
+ in_channels,
93
+ out_channels,
94
+ hidden_channels,
95
+ kernel_size,
96
+ dilation_rate,
97
+ n_layers,
98
+ gin_channels=0):
99
+ super().__init__()
100
+ self.in_channels = in_channels
101
+ self.out_channels = out_channels
102
+ self.hidden_channels = hidden_channels
103
+ self.kernel_size = kernel_size
104
+ self.dilation_rate = dilation_rate
105
+ self.n_layers = n_layers
106
+ self.gin_channels = gin_channels
107
+
108
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
109
+ self.down_pre = nn.Conv1d(1, 16, 7, 1, padding=3)
110
+ self.resblocks = nn.ModuleList()
111
+ downsample_rates = [8,5,4,2]
112
+ downsample_kernel_sizes = [17, 10, 8, 4]
113
+ ch = [16, 32, 64, 128, 192]
114
+
115
+ resblock = AMPBlock1
116
+ resblock_kernel_sizes = [3,7,11]
117
+ resblock_dilation_sizes = [[1,3,5], [1,3,5], [1,3,5]]
118
+ self.num_kernels = 3
119
+ self.downs = nn.ModuleList()
120
+ for i, (u, k) in enumerate(zip(downsample_rates, downsample_kernel_sizes)):
121
+ self.downs.append(weight_norm(
122
+ Conv1d(ch[i], ch[i+1], k, u, padding=(k-1)//2)))
123
+ for i in range(4):
124
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
125
+ self.resblocks.append(resblock(ch[i+1], k, d, activation="snakebeta"))
126
+
127
+ activation_post = activations.SnakeBeta(ch[i+1], alpha_logscale=True)
128
+ self.activation_post = Activation1d(activation=activation_post)
129
+
130
+ self.conv_post = Conv1d(ch[i+1], hidden_channels, 7, 1, padding=3)
131
+
132
+
133
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
134
+ self.proj = nn.Conv1d(hidden_channels*2, out_channels * 2, 1)
135
+
136
+ def forward(self, x, x_audio, x_mask, g=None):
137
+
138
+ x_audio = self.down_pre(x_audio)
139
+
140
+ for i in range(4):
141
+
142
+ x_audio = self.downs[i](x_audio)
143
+
144
+ xs = None
145
+ for j in range(self.num_kernels):
146
+ if xs is None:
147
+ xs = self.resblocks[i*self.num_kernels+j](x_audio)
148
+ else:
149
+ xs += self.resblocks[i*self.num_kernels+j](x_audio)
150
+ x_audio = xs / self.num_kernels
151
+
152
+ x_audio = self.activation_post(x_audio)
153
+ x_audio = self.conv_post(x_audio)
154
+
155
+ x = self.pre(x) * x_mask
156
+ x = self.enc(x, x_mask, g=g)
157
+
158
+ x_audio = x_audio * x_mask
159
+
160
+ x = torch.cat([x, x_audio], dim=1)
161
+
162
+ stats = self.proj(x) * x_mask
163
+
164
+ m, logs = torch.split(stats, self.out_channels, dim=1)
165
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
166
+ return z, m, logs
167
+
168
+ class PosteriorSFEncoder(nn.Module):
169
+ def __init__(self,
170
+ src_channels,
171
+ out_channels,
172
+ hidden_channels,
173
+ kernel_size,
174
+ dilation_rate,
175
+ n_layers,
176
+ gin_channels=0):
177
+ super().__init__()
178
+
179
+ self.out_channels = out_channels
180
+ self.hidden_channels = hidden_channels
181
+ self.kernel_size = kernel_size
182
+ self.dilation_rate = dilation_rate
183
+ self.n_layers = n_layers
184
+ self.gin_channels = gin_channels
185
+
186
+ self.pre_source = nn.Conv1d(src_channels, hidden_channels, 1)
187
+ self.pre_filter = nn.Conv1d(1, hidden_channels, kernel_size=9, stride=4, padding=4)
188
+ self.source_enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers//2, gin_channels=gin_channels)
189
+ self.filter_enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers//2, gin_channels=gin_channels)
190
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers//2, gin_channels=gin_channels)
191
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
192
+
193
+ def forward(self, x_src, x_ftr, x_mask, g=None):
194
+
195
+ x_src = self.pre_source(x_src) * x_mask
196
+ x_ftr = self.pre_filter(x_ftr) * x_mask
197
+ x_src = self.source_enc(x_src, x_mask, g=g)
198
+ x_ftr = self.filter_enc(x_ftr, x_mask, g=g)
199
+ x = self.enc(x_src+x_ftr, x_mask, g=g)
200
+ stats = self.proj(x) * x_mask
201
+ m, logs = torch.split(stats, self.out_channels, dim=1)
202
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
203
+ return z, m, logs
204
+
205
+
206
+ class MelDecoder(nn.Module):
207
+ def __init__(self,
208
+ hidden_channels,
209
+ filter_channels,
210
+ n_heads,
211
+ n_layers,
212
+ kernel_size,
213
+ p_dropout,
214
+ mel_size=20,
215
+ gin_channels=0):
216
+ super().__init__()
217
+
218
+ self.hidden_channels = hidden_channels
219
+ self.filter_channels = filter_channels
220
+ self.n_heads = n_heads
221
+ self.n_layers = n_layers
222
+ self.kernel_size = kernel_size
223
+ self.p_dropout = p_dropout
224
+
225
+ self.conv_pre = Conv1d(hidden_channels, hidden_channels, 3, 1, padding=1)
226
+
227
+ self.encoder = attentions.Encoder(
228
+ hidden_channels,
229
+ filter_channels,
230
+ n_heads,
231
+ n_layers,
232
+ kernel_size,
233
+ p_dropout)
234
+
235
+ self.proj= nn.Conv1d(hidden_channels, mel_size, 1, bias=False)
236
+
237
+ if gin_channels != 0:
238
+ self.cond = nn.Conv1d(gin_channels, hidden_channels, 1)
239
+
240
+ def forward(self, x, x_mask, g=None):
241
+
242
+ x = self.conv_pre(x*x_mask)
243
+ if g is not None:
244
+ x = x + self.cond(g)
245
+
246
+ x = self.encoder(x * x_mask, x_mask)
247
+ x = self.proj(x) * x_mask
248
+
249
+ return x
250
+
251
+ class SourceNetwork(nn.Module):
252
+ def __init__(self, upsample_initial_channel=256):
253
+ super().__init__()
254
+
255
+ resblock_kernel_sizes = [3,5,7]
256
+ upsample_rates = [2,2]
257
+ initial_channel = 192
258
+ upsample_initial_channel = upsample_initial_channel
259
+ upsample_kernel_sizes = [4,4]
260
+ resblock_dilation_sizes = [[1,3,5], [1,3,5], [1,3,5]]
261
+
262
+ self.num_kernels = len(resblock_kernel_sizes)
263
+ self.num_upsamples = len(upsample_rates)
264
+
265
+ self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
266
+ resblock = AMPBlock1
267
+
268
+ self.ups = nn.ModuleList()
269
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
270
+ self.ups.append(weight_norm(
271
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
272
+ k, u, padding=(k-u)//2)))
273
+
274
+ self.resblocks = nn.ModuleList()
275
+ for i in range(len(self.ups)):
276
+ ch = upsample_initial_channel//(2**(i+1))
277
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
278
+ self.resblocks.append(resblock(ch, k, d, activation="snakebeta"))
279
+
280
+ activation_post = activations.SnakeBeta(ch, alpha_logscale=True)
281
+ self.activation_post = Activation1d(activation=activation_post)
282
+
283
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
284
+
285
+ self.cond = Conv1d(256, upsample_initial_channel, 1)
286
+
287
+ self.ups.apply(init_weights)
288
+
289
+
290
+ def forward(self, x, g):
291
+
292
+ x = self.conv_pre(x) + self.cond(g)
293
+
294
+ for i in range(self.num_upsamples):
295
+
296
+ x = self.ups[i](x)
297
+ xs = None
298
+ for j in range(self.num_kernels):
299
+ if xs is None:
300
+ xs = self.resblocks[i*self.num_kernels+j](x)
301
+ else:
302
+ xs += self.resblocks[i*self.num_kernels+j](x)
303
+ x = xs / self.num_kernels
304
+
305
+ x = self.activation_post(x)
306
+ ## Predictor
307
+ x_ = self.conv_post(x)
308
+ return x, x_
309
+
310
+ def remove_weight_norm(self):
311
+ print('Removing weight norm...')
312
+ for l in self.ups:
313
+ remove_weight_norm(l)
314
+ for l in self.resblocks:
315
+ l.remove_weight_norm()
316
+
317
+ class DBlock(nn.Module):
318
+ def __init__(self, input_size, hidden_size, factor):
319
+ super().__init__()
320
+ self.factor = factor
321
+ self.residual_dense = weight_norm(Conv1d(input_size, hidden_size, 1))
322
+ self.conv = nn.ModuleList([
323
+ weight_norm(Conv1d(input_size, hidden_size, 3, dilation=1, padding=1)),
324
+ weight_norm(Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2)),
325
+ weight_norm(Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4)),
326
+ ])
327
+ self.conv.apply(init_weights)
328
+ def forward(self, x):
329
+ size = x.shape[-1] // self.factor
330
+
331
+ residual = self.residual_dense(x)
332
+ residual = F.interpolate(residual, size=size)
333
+
334
+ x = F.interpolate(x, size=size)
335
+ for layer in self.conv:
336
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
337
+ x = layer(x)
338
+
339
+ return x + residual
340
+ def remove_weight_norm(self):
341
+ for l in self.conv:
342
+ remove_weight_norm(l)
343
+
344
+ class AMPBlock1(torch.nn.Module):
345
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
346
+ super(AMPBlock1, self).__init__()
347
+
348
+ self.convs1 = nn.ModuleList([
349
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
350
+ padding=get_padding(kernel_size, dilation[0]))),
351
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
352
+ padding=get_padding(kernel_size, dilation[1]))),
353
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
354
+ padding=get_padding(kernel_size, dilation[2])))
355
+ ])
356
+ self.convs1.apply(init_weights)
357
+
358
+ self.convs2 = nn.ModuleList([
359
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
360
+ padding=get_padding(kernel_size, 1))),
361
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
362
+ padding=get_padding(kernel_size, 1))),
363
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
364
+ padding=get_padding(kernel_size, 1)))
365
+ ])
366
+ self.convs2.apply(init_weights)
367
+
368
+ self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
369
+
370
+
371
+ self.activations = nn.ModuleList([
372
+ Activation1d(
373
+ activation=activations.SnakeBeta(channels, alpha_logscale=True))
374
+ for _ in range(self.num_layers)
375
+ ])
376
+
377
+ def forward(self, x):
378
+ acts1, acts2 = self.activations[::2], self.activations[1::2]
379
+ for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
380
+ xt = a1(x)
381
+ xt = c1(xt)
382
+ xt = a2(xt)
383
+ xt = c2(xt)
384
+ x = xt + x
385
+
386
+ return x
387
+
388
+ def remove_weight_norm(self):
389
+ for l in self.convs1:
390
+ remove_weight_norm(l)
391
+ for l in self.convs2:
392
+ remove_weight_norm(l)
393
+
394
+ class Generator(torch.nn.Module):
395
+ def __init__(self, initial_channel, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=256):
396
+ super(Generator, self).__init__()
397
+ self.num_kernels = len(resblock_kernel_sizes)
398
+ self.num_upsamples = len(upsample_rates)
399
+
400
+
401
+ self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
402
+ resblock = AMPBlock1
403
+
404
+ self.ups = nn.ModuleList()
405
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
406
+ self.ups.append(weight_norm(
407
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
408
+ k, u, padding=(k-u)//2)))
409
+
410
+ self.resblocks = nn.ModuleList()
411
+ for i in range(len(self.ups)):
412
+ ch = upsample_initial_channel//(2**(i+1))
413
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
414
+ self.resblocks.append(resblock(ch, k, d, activation="snakebeta"))
415
+
416
+ activation_post = activations.SnakeBeta(ch, alpha_logscale=True)
417
+ self.activation_post = Activation1d(activation=activation_post)
418
+
419
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
420
+ self.ups.apply(init_weights)
421
+
422
+ if gin_channels != 0:
423
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
424
+
425
+ self.downs = DBlock(upsample_initial_channel//8, upsample_initial_channel, 4)
426
+ self.proj = Conv1d(upsample_initial_channel//8, upsample_initial_channel//2, 7, 1, padding=3)
427
+
428
+ def forward(self, x, pitch, g=None):
429
+
430
+ x = self.conv_pre(x) + self.downs(pitch) + self.cond(g)
431
+
432
+ for i in range(self.num_upsamples):
433
+
434
+ x = self.ups[i](x)
435
+
436
+ if i == 0:
437
+ pitch = self.proj(pitch)
438
+ x = x + pitch
439
+
440
+ xs = None
441
+ for j in range(self.num_kernels):
442
+ if xs is None:
443
+ xs = self.resblocks[i*self.num_kernels+j](x)
444
+ else:
445
+ xs += self.resblocks[i*self.num_kernels+j](x)
446
+ x = xs / self.num_kernels
447
+
448
+ x = self.activation_post(x)
449
+ x = self.conv_post(x)
450
+ x = torch.tanh(x)
451
+ return x
452
+
453
+ def remove_weight_norm(self):
454
+ print('Removing weight norm...')
455
+ for l in self.ups:
456
+ remove_weight_norm(l)
457
+ for l in self.resblocks:
458
+ l.remove_weight_norm()
459
+ for l in self.downs:
460
+ l.remove_weight_norm()
461
+ remove_weight_norm(self.conv_pre)
462
+
463
+ class DiscriminatorP(torch.nn.Module):
464
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
465
+ super(DiscriminatorP, self).__init__()
466
+ self.period = period
467
+ self.use_spectral_norm = use_spectral_norm
468
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
469
+ self.convs = nn.ModuleList([
470
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
471
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
472
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
473
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
474
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
475
+ ])
476
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
477
+
478
+ def forward(self, x):
479
+ fmap = []
480
+
481
+ # 1d to 2d
482
+ b, c, t = x.shape
483
+ if t % self.period != 0: # pad first
484
+ n_pad = self.period - (t % self.period)
485
+ x = F.pad(x, (0, n_pad), "reflect")
486
+ t = t + n_pad
487
+ x = x.view(b, c, t // self.period, self.period)
488
+
489
+ for l in self.convs:
490
+ x = l(x)
491
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
492
+ fmap.append(x)
493
+ x = self.conv_post(x)
494
+ fmap.append(x)
495
+ x = torch.flatten(x, 1, -1)
496
+
497
+ return x, fmap
498
+
499
+ class DiscriminatorR(torch.nn.Module):
500
+ def __init__(self, resolution, use_spectral_norm=False):
501
+ super(DiscriminatorR, self).__init__()
502
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
503
+
504
+ n_fft, hop_length, win_length = resolution
505
+ self.spec_transform = torchaudio.transforms.Spectrogram(
506
+ n_fft=n_fft, hop_length=hop_length, win_length=win_length, window_fn=torch.hann_window,
507
+ normalized=True, center=False, pad_mode=None, power=None)
508
+
509
+ self.convs = nn.ModuleList([
510
+ norm_f(nn.Conv2d(2, 32, (3, 9), padding=(1, 4))),
511
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),
512
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(2,1), padding=(2, 4))),
513
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(4,1), padding=(4, 4))),
514
+ norm_f(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))),
515
+ ])
516
+ self.conv_post = norm_f(nn.Conv2d(32, 1, (3, 3), padding=(1, 1)))
517
+
518
+ def forward(self, y):
519
+ fmap = []
520
+
521
+ x = self.spec_transform(y) # [B, 2, Freq, Frames, 2]
522
+ x = torch.cat([x.real, x.imag], dim=1)
523
+ x = rearrange(x, 'b c w t -> b c t w')
524
+
525
+ for l in self.convs:
526
+ x = l(x)
527
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
528
+ fmap.append(x)
529
+ x = self.conv_post(x)
530
+ fmap.append(x)
531
+ x = torch.flatten(x, 1, -1)
532
+
533
+ return x, fmap
534
+
535
+
536
+ class MultiPeriodDiscriminator(torch.nn.Module):
537
+ def __init__(self, use_spectral_norm=False):
538
+ super(MultiPeriodDiscriminator, self).__init__()
539
+ periods = [2,3,5,7,11]
540
+ resolutions = [[2048, 512, 2048], [1024, 256, 1024], [512, 128, 512], [256, 64, 256], [128, 32, 128]]
541
+
542
+ discs = [DiscriminatorR(resolutions[i], use_spectral_norm=use_spectral_norm) for i in range(len(resolutions))]
543
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
544
+
545
+ self.discriminators = nn.ModuleList(discs)
546
+
547
+ def forward(self, y, y_hat):
548
+ y_d_rs = []
549
+ y_d_gs = []
550
+ fmap_rs = []
551
+ fmap_gs = []
552
+ for i, d in enumerate(self.discriminators):
553
+ y_d_r, fmap_r = d(y)
554
+ y_d_g, fmap_g = d(y_hat)
555
+ y_d_rs.append(y_d_r)
556
+ y_d_gs.append(y_d_g)
557
+ fmap_rs.append(fmap_r)
558
+ fmap_gs.append(fmap_g)
559
+
560
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
561
+
562
+ class SynthesizerTrn(nn.Module):
563
+ """
564
+ Synthesizer for Training
565
+ """
566
+
567
+ def __init__(self,
568
+
569
+ spec_channels,
570
+ segment_size,
571
+ inter_channels,
572
+ hidden_channels,
573
+ filter_channels,
574
+ n_heads,
575
+ n_layers,
576
+ kernel_size,
577
+ p_dropout,
578
+ resblock,
579
+ resblock_kernel_sizes,
580
+ resblock_dilation_sizes,
581
+ upsample_rates,
582
+ upsample_initial_channel,
583
+ upsample_kernel_sizes,
584
+ gin_channels=256,
585
+ prosody_size=20,
586
+ uncond_ratio=0.,
587
+ cfg=False,
588
+ **kwargs):
589
+
590
+ super().__init__()
591
+ self.spec_channels = spec_channels
592
+ self.inter_channels = inter_channels
593
+ self.hidden_channels = hidden_channels
594
+ self.filter_channels = filter_channels
595
+ self.n_heads = n_heads
596
+ self.n_layers = n_layers
597
+ self.kernel_size = kernel_size
598
+ self.p_dropout = p_dropout
599
+ self.resblock = resblock
600
+ self.resblock_kernel_sizes = resblock_kernel_sizes
601
+ self.resblock_dilation_sizes = resblock_dilation_sizes
602
+ self.upsample_rates = upsample_rates
603
+ self.upsample_initial_channel = upsample_initial_channel
604
+ self.upsample_kernel_sizes = upsample_kernel_sizes
605
+ self.segment_size = segment_size
606
+ self.mel_size = prosody_size
607
+
608
+ self.enc_p_l = PosteriorSFEncoder(1024, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
609
+ self.flow_l = ResidualCouplingBlock_Transformer(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
610
+
611
+ self.enc_p = PosteriorSFEncoder(1024, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
612
+ self.enc_q = PosteriorAudioEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
613
+ self.flow = ResidualCouplingBlock_Transformer(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
614
+
615
+ self.mel_decoder = MelDecoder(inter_channels,
616
+ filter_channels,
617
+ n_heads=2,
618
+ n_layers=2,
619
+ kernel_size=5,
620
+ p_dropout=0.1,
621
+ mel_size=self.mel_size,
622
+ gin_channels=gin_channels)
623
+
624
+ self.dec = Generator(inter_channels, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
625
+ self.sn = SourceNetwork(upsample_initial_channel//2)
626
+ self.emb_g = StyleEncoder(in_dim=80, hidden_dim=256, out_dim=gin_channels)
627
+
628
+ if cfg:
629
+
630
+ self.emb = torch.nn.Embedding(1, 256)
631
+ torch.nn.init.normal_(self.emb.weight, 0.0, 256 ** -0.5)
632
+ self.null = torch.LongTensor([0]).cuda()
633
+ self.uncond_ratio = uncond_ratio
634
+ self.cfg = cfg
635
+ @torch.no_grad()
636
+ def infer(self, x_mel, w2v, length, f0):
637
+
638
+ x_mask = torch.unsqueeze(commons.sequence_mask(length, x_mel.size(2)), 1).to(x_mel.dtype)
639
+
640
+ # Speaker embedding from mel (Style Encoder)
641
+ g = self.emb_g(x_mel, x_mask).unsqueeze(-1)
642
+
643
+ z, _, _ = self.enc_p_l(w2v, f0, x_mask, g=g)
644
+
645
+ z = self.flow_l(z, x_mask, g=g, reverse=True)
646
+ z = self.flow(z, x_mask, g=g, reverse=True)
647
+
648
+ e, e_ = self.sn(z, g)
649
+ o = self.dec(z, e, g=g)
650
+
651
+ return o, e_
652
+ @torch.no_grad()
653
+ def voice_conversion(self, src, src_length, trg_mel, trg_length, f0, noise_scale = 0.333, uncond=False):
654
+
655
+ trg_mask = torch.unsqueeze(commons.sequence_mask(trg_length, trg_mel.size(2)), 1).to(trg_mel.dtype)
656
+ g = self.emb_g(trg_mel, trg_mask).unsqueeze(-1)
657
+
658
+ y_mask = torch.unsqueeze(commons.sequence_mask(src_length, src.size(2)), 1).to(trg_mel.dtype)
659
+ z, m_p, logs_p = self.enc_p_l(src, f0, y_mask, g=g)
660
+
661
+ z = (m_p + torch.randn_like(m_p) * torch.exp(logs_p)*noise_scale) * y_mask
662
+
663
+ z = self.flow_l(z, y_mask, g=g, reverse=True)
664
+ z = self.flow(z, y_mask, g=g, reverse=True)
665
+
666
+ if uncond:
667
+ null_emb = self.emb(self.null) * math.sqrt(256)
668
+ g = null_emb.unsqueeze(-1)
669
+
670
+ e, _ = self.sn(z, g)
671
+ o = self.dec(z, e, g=g)
672
+
673
+ return o
674
+ @torch.no_grad()
675
+ def voice_conversion_noise_control(self, src, src_length, trg_mel, trg_length, f0, noise_scale = 0.333, uncond=False, denoise_ratio = 0):
676
+
677
+ trg_mask = torch.unsqueeze(commons.sequence_mask(trg_length, trg_mel.size(2)), 1).to(trg_mel.dtype)
678
+ g = self.emb_g(trg_mel, trg_mask).unsqueeze(-1)
679
+
680
+ g_org, g_denoise = g[:1, :, :], g[1:, :, :]
681
+
682
+ g_interpolation = (1-denoise_ratio)*g_org + denoise_ratio*g_denoise
683
+
684
+ y_mask = torch.unsqueeze(commons.sequence_mask(src_length, src.size(2)), 1).to(trg_mel.dtype)
685
+ z, m_p, logs_p = self.enc_p_l(src, f0, y_mask, g=g_interpolation)
686
+
687
+ z = (m_p + torch.randn_like(m_p) * torch.exp(logs_p)*noise_scale) * y_mask
688
+
689
+ z = self.flow_l(z, y_mask, g=g_interpolation, reverse=True)
690
+ z = self.flow(z, y_mask, g=g_interpolation, reverse=True)
691
+
692
+ if uncond:
693
+ null_emb = self.emb(self.null) * math.sqrt(256)
694
+ g = null_emb.unsqueeze(-1)
695
+
696
+ e, _ = self.sn(z, g_interpolation)
697
+ o = self.dec(z, e, g=g_interpolation)
698
+
699
+ return o
700
+ @torch.no_grad()
701
+ def f0_extraction(self, x_linear, x_mel, length, x_audio, noise_scale = 0.333):
702
+
703
+ x_mask = torch.unsqueeze(commons.sequence_mask(length, x_mel.size(2)), 1).to(x_mel.dtype)
704
+
705
+ # Speaker embedding from mel (Style Encoder)
706
+ g = self.emb_g(x_mel, x_mask).unsqueeze(-1)
707
+
708
+ # posterior encoder from linear spec.
709
+ _, m_q, logs_q= self.enc_q(x_linear, x_audio, x_mask, g=g)
710
+ z = (m_q + torch.randn_like(m_q) * torch.exp(logs_q)*noise_scale)
711
+
712
+ # Source Networks
713
+ _, e_ = self.sn(z, g)
714
+
715
+ return e_
716
+
inference.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import argparse
4
+ import numpy as np
5
+ from scipy.io.wavfile import write
6
+ import torchaudio
7
+ import utils
8
+ from Mels_preprocess import MelSpectrogramFixed
9
+
10
+ from hierspeechpp_speechsynthesizer import (
11
+ SynthesizerTrn
12
+ )
13
+ from ttv_v1.text import text_to_sequence
14
+ from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
15
+ from speechsr24k.speechsr import SynthesizerTrn as AudioSR
16
+ from speechsr48k.speechsr import SynthesizerTrn as AudioSR48
17
+ from denoiser.generator import MPNet
18
+ from denoiser.infer import denoise
19
+
20
+ seed = 1111
21
+ torch.manual_seed(seed)
22
+ torch.cuda.manual_seed(seed)
23
+ np.random.seed(seed)
24
+
25
+ def load_text(fp):
26
+ with open(fp, 'r') as f:
27
+ filelist = [line.strip() for line in f.readlines()]
28
+ return filelist
29
+ def load_checkpoint(filepath, device):
30
+ print(filepath)
31
+ assert os.path.isfile(filepath)
32
+ print("Loading '{}'".format(filepath))
33
+ checkpoint_dict = torch.load(filepath, map_location=device)
34
+ print("Complete.")
35
+ return checkpoint_dict
36
+ def get_param_num(model):
37
+ num_param = sum(param.numel() for param in model.parameters())
38
+ return num_param
39
+ def intersperse(lst, item):
40
+ result = [item] * (len(lst) * 2 + 1)
41
+ result[1::2] = lst
42
+ return result
43
+
44
+ def add_blank_token(text):
45
+
46
+ text_norm = intersperse(text, 0)
47
+ text_norm = torch.LongTensor(text_norm)
48
+ return text_norm
49
+
50
+ def tts(text, a, hierspeech):
51
+
52
+ net_g, text2w2v, audiosr, denoiser, mel_fn = hierspeech
53
+
54
+ os.makedirs(a.output_dir, exist_ok=True)
55
+ text = text_to_sequence(str(text), ["english_cleaners2"])
56
+ token = add_blank_token(text).unsqueeze(0).cuda()
57
+ token_length = torch.LongTensor([token.size(-1)]).cuda()
58
+
59
+ # Prompt load
60
+ audio, sample_rate = torchaudio.load(a.input_prompt)
61
+
62
+ # support only single channel
63
+ audio = audio[:1,:]
64
+ # Resampling
65
+ if sample_rate != 16000:
66
+ audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window")
67
+ if a.scale_norm == 'prompt':
68
+ prompt_audio_max = torch.max(audio.abs())
69
+
70
+ # We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
71
+ ori_prompt_len = audio.shape[-1]
72
+ p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
73
+ audio = torch.nn.functional.pad(audio, (0, p), mode='constant').data
74
+
75
+ file_name = os.path.splitext(os.path.basename(a.input_prompt))[0]
76
+
77
+ # If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
78
+ # We will have a plan to replace a memory-efficient denoiser
79
+ if a.denoise_ratio == 0:
80
+ audio = torch.cat([audio.cuda(), audio.cuda()], dim=0)
81
+ else:
82
+ with torch.no_grad():
83
+ denoised_audio = denoise(audio.squeeze(0).cuda(), denoiser, hps_denoiser)
84
+ audio = torch.cat([audio.cuda(), denoised_audio[:,:audio.shape[-1]]], dim=0)
85
+
86
+
87
+ audio = audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
88
+
89
+ src_mel = mel_fn(audio.cuda())
90
+
91
+ src_length = torch.LongTensor([src_mel.size(2)]).to(device)
92
+ src_length2 = torch.cat([src_length,src_length], dim=0)
93
+
94
+ ## TTV (Text --> W2V, F0)
95
+ with torch.no_grad():
96
+ w2v_x, pitch = text2w2v.infer_noise_control(token, token_length, src_mel, src_length2, noise_scale=a.noise_scale_ttv, denoise_ratio=a.denoise_ratio)
97
+
98
+ src_length = torch.LongTensor([w2v_x.size(2)]).cuda()
99
+
100
+ ## Pitch Clipping
101
+ pitch[pitch<torch.log(torch.tensor([55]).cuda())] = 0
102
+
103
+ ## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
104
+ converted_audio = \
105
+ net_g.voice_conversion_noise_control(w2v_x, src_length, src_mel, src_length2, pitch, noise_scale=a.noise_scale_vc, denoise_ratio=a.denoise_ratio)
106
+
107
+ ## SpeechSR (Optional) (16k Audio --> 24k or 48k Audio)
108
+ if a.output_sr == 48000 or 24000:
109
+ converted_audio = audiosr(converted_audio)
110
+
111
+ converted_audio = converted_audio.squeeze()
112
+
113
+ if a.scale_norm == 'prompt':
114
+ converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * prompt_audio_max
115
+ else:
116
+ converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
117
+
118
+ converted_audio = converted_audio.cpu().numpy().astype('int16')
119
+
120
+ file_name2 = "{}.wav".format(file_name)
121
+ output_file = os.path.join(a.output_dir, file_name2)
122
+
123
+ if a.output_sr == 48000:
124
+ write(output_file, 48000, converted_audio)
125
+ elif a.output_sr == 24000:
126
+ write(output_file, 24000, converted_audio)
127
+ else:
128
+ write(output_file, 16000, converted_audio)
129
+
130
+ def model_load(a):
131
+ mel_fn = MelSpectrogramFixed(
132
+ sample_rate=hps.data.sampling_rate,
133
+ n_fft=hps.data.filter_length,
134
+ win_length=hps.data.win_length,
135
+ hop_length=hps.data.hop_length,
136
+ f_min=hps.data.mel_fmin,
137
+ f_max=hps.data.mel_fmax,
138
+ n_mels=hps.data.n_mel_channels,
139
+ window_fn=torch.hann_window
140
+ ).cuda()
141
+
142
+ net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
143
+ hps.train.segment_size // hps.data.hop_length,
144
+ **hps.model).cuda()
145
+ net_g.load_state_dict(torch.load(a.ckpt))
146
+ _ = net_g.eval()
147
+
148
+ text2w2v = Text2W2V(hps.data.filter_length // 2 + 1,
149
+ hps.train.segment_size // hps.data.hop_length,
150
+ **hps_t2w2v.model).cuda()
151
+ text2w2v.load_state_dict(torch.load(a.ckpt_text2w2v))
152
+ text2w2v.eval()
153
+
154
+ if a.output_sr == 48000:
155
+ audiosr = AudioSR48(h_sr48.data.n_mel_channels,
156
+ h_sr48.train.segment_size // h_sr48.data.hop_length,
157
+ **h_sr48.model).cuda()
158
+ utils.load_checkpoint(a.ckpt_sr48, audiosr, None)
159
+ audiosr.eval()
160
+
161
+ elif a.output_sr == 24000:
162
+ audiosr = AudioSR(h_sr.data.n_mel_channels,
163
+ h_sr.train.segment_size // h_sr.data.hop_length,
164
+ **h_sr.model).cuda()
165
+ utils.load_checkpoint(a.ckpt_sr, audiosr, None)
166
+ audiosr.eval()
167
+
168
+ else:
169
+ audiosr = None
170
+
171
+ denoiser = MPNet(hps_denoiser).cuda()
172
+ state_dict = load_checkpoint(a.denoiser_ckpt, device)
173
+ denoiser.load_state_dict(state_dict['generator'])
174
+ denoiser.eval()
175
+ return net_g, text2w2v, audiosr, denoiser, mel_fn
176
+
177
+ def inference(a):
178
+
179
+ hierspeech = model_load(a)
180
+ # Input Text
181
+ text = load_text(a.input_txt)
182
+ # text = "hello I'm hierspeech"
183
+
184
+ tts(text, a, hierspeech)
185
+
186
+ def main():
187
+ print('Initializing Inference Process..')
188
+
189
+ parser = argparse.ArgumentParser()
190
+ parser.add_argument('--input_prompt', default='example/reference_4.wav')
191
+ parser.add_argument('--input_txt', default='example/reference_4.txt')
192
+ parser.add_argument('--output_dir', default='output')
193
+ parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
194
+ parser.add_argument('--ckpt_text2w2v', '-ct', help='text2w2v checkpoint path', default='./logs/ttv_libritts_v1/ttv_lt960_ckpt.pth')
195
+ parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
196
+ parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
197
+ parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
198
+ parser.add_argument('--scale_norm', type=str, default='max')
199
+ parser.add_argument('--output_sr', type=float, default=48000)
200
+ parser.add_argument('--noise_scale_ttv', type=float,
201
+ default=0.333)
202
+ parser.add_argument('--noise_scale_vc', type=float,
203
+ default=0.333)
204
+ parser.add_argument('--denoise_ratio', type=float,
205
+ default=0.8)
206
+ a = parser.parse_args()
207
+
208
+ global device, hps, hps_t2w2v,h_sr,h_sr48, hps_denoiser
209
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
210
+
211
+ hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
212
+ hps_t2w2v = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_text2w2v)[0], 'config.json'))
213
+ h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
214
+ h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
215
+ hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
216
+
217
+ inference(a)
218
+
219
+ if __name__ == '__main__':
220
+ main()
inference.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --ckpt "logs/hierspeechpp_libritts460/hierspeechpp_lt460_ckpt.pth" \ LibriTTS-460
2
+ # --ckpt "logs/hierspeechpp_libritts960/hierspeechpp_lt960_ckpt.pth" \ LibriTTS-960
3
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v1_ckpt.pth" \ Large_v1 epoch 60 (paper version)
4
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \ Large_v2 epoch 110 (08. Nov. 2023)
5
+
6
+ CUDA_VISIBLE_DEVICES=0 python3 inference.py \
7
+ --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \
8
+ --ckpt_text2w2v "logs/ttv_libritts_v1/ttv_lt960_ckpt.pth" \
9
+ --output_dir "tts_results_eng_kor_v2" \
10
+ --noise_scale_vc "0.333" \
11
+ --noise_scale_ttv "0.333" \
12
+ --denoise_ratio "0"
inference_speechsr.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import argparse
4
+ import numpy as np
5
+ from scipy.io.wavfile import write
6
+ import torchaudio
7
+ import utils
8
+
9
+ from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
10
+ from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
11
+
12
+ seed = 1111
13
+ torch.manual_seed(seed)
14
+ torch.cuda.manual_seed(seed)
15
+ np.random.seed(seed)
16
+
17
+ def get_param_num(model):
18
+ num_param = sum(param.numel() for param in model.parameters())
19
+ return num_param
20
+
21
+ def SuperResoltuion(a, hierspeech):
22
+
23
+ speechsr = hierspeech
24
+
25
+ os.makedirs(a.output_dir, exist_ok=True)
26
+
27
+ # Prompt load
28
+ audio, sample_rate = torchaudio.load(a.input_speech)
29
+
30
+ # support only single channel
31
+ audio = audio[:1,:]
32
+ # Resampling
33
+ if sample_rate != 16000:
34
+ audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window")
35
+ file_name = os.path.splitext(os.path.basename(a.input_speech))[0]
36
+ ## SpeechSR (Optional) (16k Audio --> 24k or 48k Audio)
37
+ with torch.no_grad():
38
+ converted_audio = speechsr(audio.unsqueeze(1).cuda())
39
+ converted_audio = converted_audio.squeeze()
40
+ converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 0.999 * 32767.0
41
+ converted_audio = converted_audio.cpu().numpy().astype('int16')
42
+
43
+ file_name2 = "{}.wav".format(file_name)
44
+ output_file = os.path.join(a.output_dir, file_name2)
45
+
46
+ if a.output_sr == 48000:
47
+ write(output_file, 48000, converted_audio)
48
+ else:
49
+ write(output_file, 24000, converted_audio)
50
+
51
+
52
+ def model_load(a):
53
+ if a.output_sr == 48000:
54
+ speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
55
+ h_sr48.train.segment_size // h_sr48.data.hop_length,
56
+ **h_sr48.model).cuda()
57
+ utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
58
+ speechsr.eval()
59
+ else:
60
+ # 24000 Hz
61
+ speechsr = SpeechSR24(h_sr.data.n_mel_channels,
62
+ h_sr.train.segment_size // h_sr.data.hop_length,
63
+ **h_sr.model).cuda()
64
+ utils.load_checkpoint(a.ckpt_sr, speechsr, None)
65
+ speechsr.eval()
66
+ return speechsr
67
+
68
+ def inference(a):
69
+
70
+ speechsr = model_load(a)
71
+ SuperResoltuion(a, speechsr)
72
+
73
+ def main():
74
+ print('Initializing Inference Process..')
75
+
76
+ parser = argparse.ArgumentParser()
77
+ parser.add_argument('--input_speech', default='example/reference_4.wav')
78
+ parser.add_argument('--output_dir', default='SR_results')
79
+ parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
80
+ parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
81
+ parser.add_argument('--output_sr', type=float, default=48000)
82
+ a = parser.parse_args()
83
+
84
+ global device, h_sr, h_sr48
85
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
86
+
87
+ h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
88
+ h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
89
+
90
+
91
+ inference(a)
92
+
93
+ if __name__ == '__main__':
94
+ main()
inference_vc.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import argparse
4
+ import numpy as np
5
+ from scipy.io.wavfile import write
6
+ import torchaudio
7
+ import utils
8
+ from Mels_preprocess import MelSpectrogramFixed
9
+ from torch.nn import functional as F
10
+ from hierspeechpp_speechsynthesizer import (
11
+ SynthesizerTrn, Wav2vec2
12
+ )
13
+ from ttv_v1.text import text_to_sequence
14
+ from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
15
+ from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
16
+ from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
17
+ from denoiser.generator import MPNet
18
+ from denoiser.infer import denoise
19
+
20
+ import amfm_decompy.basic_tools as basic
21
+ import amfm_decompy.pYAAPT as pYAAPT
22
+
23
+ seed = 1111
24
+ torch.manual_seed(seed)
25
+ torch.cuda.manual_seed(seed)
26
+ np.random.seed(seed)
27
+
28
+ def get_yaapt_f0(audio, rate=16000, interp=False):
29
+ frame_length = 20.0
30
+ to_pad = int(frame_length / 1000 * rate) // 2
31
+
32
+ f0s = []
33
+ for y in audio.astype(np.float64):
34
+ y_pad = np.pad(y.squeeze(), (to_pad, to_pad), "constant", constant_values=0)
35
+ signal = basic.SignalObj(y_pad, rate)
36
+ pitch = pYAAPT.yaapt(signal, **{'frame_length': frame_length, 'frame_space': 5.0, 'nccf_thresh1': 0.25,
37
+ 'tda_frame_length': 25.0, 'f0_max':1100})
38
+ if interp:
39
+ f0s += [pitch.samp_interp[None, None, :]]
40
+ else:
41
+ f0s += [pitch.samp_values[None, None, :]]
42
+ f0 = np.vstack(f0s)
43
+ return f0
44
+
45
+ def load_text(fp):
46
+ with open(fp, 'r') as f:
47
+ filelist = [line.strip() for line in f.readlines()]
48
+ return filelist
49
+ def load_checkpoint(filepath, device):
50
+ print(filepath)
51
+ assert os.path.isfile(filepath)
52
+ print("Loading '{}'".format(filepath))
53
+ checkpoint_dict = torch.load(filepath, map_location=device)
54
+ print("Complete.")
55
+ return checkpoint_dict
56
+ def get_param_num(model):
57
+ num_param = sum(param.numel() for param in model.parameters())
58
+ return num_param
59
+ def intersperse(lst, item):
60
+ result = [item] * (len(lst) * 2 + 1)
61
+ result[1::2] = lst
62
+ return result
63
+
64
+ def add_blank_token(text):
65
+
66
+ text_norm = intersperse(text, 0)
67
+ text_norm = torch.LongTensor(text_norm)
68
+ return text_norm
69
+
70
+ def VC(a, hierspeech):
71
+
72
+ net_g, speechsr, denoiser, mel_fn, w2v = hierspeech
73
+
74
+ os.makedirs(a.output_dir, exist_ok=True)
75
+
76
+ source_audio, sample_rate = torchaudio.load(a.source_speech)
77
+ if sample_rate != 16000:
78
+ source_audio = torchaudio.functional.resample(source_audio, sample_rate, 16000, resampling_method="kaiser_window")
79
+ p = (source_audio.shape[-1] // 1280 + 1) * 1280 - source_audio.shape[-1]
80
+ source_audio = torch.nn.functional.pad(source_audio, (0, p), mode='constant').data
81
+ file_name_s = os.path.splitext(os.path.basename(a.source_speech))[0]
82
+
83
+ try:
84
+ f0 = get_yaapt_f0(source_audio.numpy())
85
+ except:
86
+ f0 = np.zeros((1, 1, source_audio.shape[-1] // 80))
87
+ f0 = f0.astype(np.float32)
88
+ f0 = f0.squeeze(0)
89
+
90
+ ii = f0 != 0
91
+ f0[ii] = (f0[ii] - f0[ii].mean()) / f0[ii].std()
92
+
93
+ y_pad = F.pad(source_audio, (40, 40), "reflect")
94
+ x_w2v = w2v(y_pad.cuda())
95
+ x_length = torch.LongTensor([x_w2v.size(2)]).to(device)
96
+
97
+ # Prompt load
98
+ target_audio, sample_rate = torchaudio.load(a.target_speech)
99
+ # support only single channel
100
+ target_audio = target_audio[:1,:]
101
+ # Resampling
102
+ if sample_rate != 16000:
103
+ target_audio = torchaudio.functional.resample(target_audio, sample_rate, 16000, resampling_method="kaiser_window")
104
+ if a.scale_norm == 'prompt':
105
+ prompt_audio_max = torch.max(target_audio.abs())
106
+ try:
107
+ t_f0 = get_yaapt_f0(target_audio.numpy())
108
+ except:
109
+ t_f0 = np.zeros((1, 1, target_audio.shape[-1] // 80))
110
+ t_f0 = t_f0.astype(np.float32)
111
+ t_f0 = t_f0.squeeze(0)
112
+ j = t_f0 != 0
113
+
114
+ f0[ii] = ((f0[ii] * t_f0[j].std()) + t_f0[j].mean()).clip(min=0)
115
+ denorm_f0 = torch.log(torch.FloatTensor(f0+1).cuda())
116
+ # We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
117
+ ori_prompt_len = target_audio.shape[-1]
118
+ p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
119
+ target_audio = torch.nn.functional.pad(target_audio, (0, p), mode='constant').data
120
+
121
+ file_name_t = os.path.splitext(os.path.basename(a.target_speech))[0]
122
+
123
+ # If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
124
+ # We will have a plan to replace a memory-efficient denoiser
125
+ if a.denoise_ratio == 0:
126
+ target_audio = torch.cat([target_audio.cuda(), target_audio.cuda()], dim=0)
127
+ else:
128
+ with torch.no_grad():
129
+ denoised_audio = denoise(target_audio.squeeze(0).cuda(), denoiser, hps_denoiser)
130
+ target_audio = torch.cat([target_audio.cuda(), denoised_audio[:,:target_audio.shape[-1]]], dim=0)
131
+
132
+
133
+ target_audio = target_audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
134
+
135
+ trg_mel = mel_fn(target_audio.cuda())
136
+
137
+ trg_length = torch.LongTensor([trg_mel.size(2)]).to(device)
138
+ trg_length2 = torch.cat([trg_length,trg_length], dim=0)
139
+
140
+
141
+ with torch.no_grad():
142
+
143
+ ## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
144
+ converted_audio = \
145
+ net_g.voice_conversion_noise_control(x_w2v, x_length, trg_mel, trg_length2, denorm_f0, noise_scale=a.noise_scale_vc, denoise_ratio=a.denoise_ratio)
146
+
147
+ ## SpeechSR (Optional) (16k Audio --> 24k or 48k Audio)
148
+ if a.output_sr == 48000 or 24000:
149
+ converted_audio = speechsr(converted_audio)
150
+
151
+ converted_audio = converted_audio.squeeze()
152
+
153
+ if a.scale_norm == 'prompt':
154
+ converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * prompt_audio_max
155
+ else:
156
+ converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
157
+
158
+ converted_audio = converted_audio.cpu().numpy().astype('int16')
159
+
160
+ file_name2 = "{}.wav".format(file_name_s+"_to_"+file_name_t)
161
+ output_file = os.path.join(a.output_dir, file_name2)
162
+
163
+ if a.output_sr == 48000:
164
+ write(output_file, 48000, converted_audio)
165
+ elif a.output_sr == 24000:
166
+ write(output_file, 24000, converted_audio)
167
+ else:
168
+ write(output_file, 16000, converted_audio)
169
+
170
+ def model_load(a):
171
+ mel_fn = MelSpectrogramFixed(
172
+ sample_rate=hps.data.sampling_rate,
173
+ n_fft=hps.data.filter_length,
174
+ win_length=hps.data.win_length,
175
+ hop_length=hps.data.hop_length,
176
+ f_min=hps.data.mel_fmin,
177
+ f_max=hps.data.mel_fmax,
178
+ n_mels=hps.data.n_mel_channels,
179
+ window_fn=torch.hann_window
180
+ ).cuda()
181
+ w2v = Wav2vec2().cuda()
182
+
183
+ net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
184
+ hps.train.segment_size // hps.data.hop_length,
185
+ **hps.model).cuda()
186
+ net_g.load_state_dict(torch.load(a.ckpt))
187
+ _ = net_g.eval()
188
+
189
+ if a.output_sr == 48000:
190
+ speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
191
+ h_sr48.train.segment_size // h_sr48.data.hop_length,
192
+ **h_sr48.model).cuda()
193
+ utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
194
+ speechsr.eval()
195
+
196
+ elif a.output_sr == 24000:
197
+ speechsr = SpeechSR24(h_sr.data.n_mel_channels,
198
+ h_sr.train.segment_size // h_sr.data.hop_length,
199
+ **h_sr.model).cuda()
200
+ utils.load_checkpoint(a.ckpt_sr, speechsr, None)
201
+ speechsr.eval()
202
+
203
+ else:
204
+ speechsr = None
205
+
206
+ denoiser = MPNet(hps_denoiser).cuda()
207
+ state_dict = load_checkpoint(a.denoiser_ckpt, device)
208
+ denoiser.load_state_dict(state_dict['generator'])
209
+ denoiser.eval()
210
+ return net_g, speechsr, denoiser, mel_fn, w2v
211
+
212
+ def inference(a):
213
+
214
+ hierspeech = model_load(a)
215
+
216
+ VC(a, hierspeech)
217
+
218
+ def main():
219
+ print('Initializing Inference Process..')
220
+
221
+ parser = argparse.ArgumentParser()
222
+ parser.add_argument('--source_speech', default='example/reference_2.wav')
223
+ parser.add_argument('--target_speech', default='example/reference_1.wav')
224
+ parser.add_argument('--output_dir', default='output')
225
+ parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
226
+ parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
227
+ parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
228
+ parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
229
+ parser.add_argument('--scale_norm', type=str, default='max')
230
+ parser.add_argument('--output_sr', type=float, default=48000)
231
+ parser.add_argument('--noise_scale_ttv', type=float,
232
+ default=0.333)
233
+ parser.add_argument('--noise_scale_vc', type=float,
234
+ default=0.333)
235
+ parser.add_argument('--denoise_ratio', type=float,
236
+ default=0.8)
237
+ a = parser.parse_args()
238
+
239
+ global device, hps, h_sr,h_sr48, hps_denoiser
240
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
241
+
242
+ hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
243
+ h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
244
+ h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
245
+ hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
246
+
247
+ inference(a)
248
+
249
+ if __name__ == '__main__':
250
+ main()
inference_vc.sh ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --ckpt "logs/hierspeechpp_libritts460/hierspeechpp_lt460_ckpt.pth" \ LibriTTS-460
2
+ # --ckpt "logs/hierspeechpp_libritts960/hierspeechpp_lt960_ckpt.pth" \ LibriTTS-960
3
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v1_ckpt.pth" \ Large_v1 epoch 60 (paper version)
4
+ # --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \ Large_v2 epoch 110 (08. Nov. 2023)
5
+
6
+ CUDA_VISIBLE_DEVICES=0 python3 inference_vc.py \
7
+ --ckpt "logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth" \
8
+ --output_dir "vc_results_eng_kor_v2" \
9
+ --noise_scale_vc "0.333" \
10
+ --noise_scale_ttv "0.333" \
11
+ --denoise_ratio "0"
logs/hierspeechpp_eng_kor/config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 10000,
5
+ "save_interval": 10000,
6
+ "seed": 1234,
7
+ "epochs": 20000,
8
+ "learning_rate": 1e-4,
9
+ "betas": [0.8, 0.99],
10
+ "eps": 1e-9,
11
+ "batch_size": 20,
12
+ "fp16_run": false,
13
+ "lr_decay": 0.999,
14
+ "segment_size": 61440,
15
+ "init_lr_ratio": 1,
16
+ "warmup_epochs": 0,
17
+ "c_mel": 45,
18
+ "c_kl": 1.0,
19
+ "c_bi_kl": 0.5,
20
+ "c_mixup": 1,
21
+ "c_pho": 45.0,
22
+ "c_f0": 45,
23
+ "aug": true
24
+ },
25
+ "data": {
26
+ "train_filelist_path": "filelists/train_eng_kor_wav.txt",
27
+ "test_filelist_path": "filelists/test_hier_16k_72_wav.txt",
28
+ "text_cleaners":["english_cleaners2"],
29
+ "max_wav_value": 32768.0,
30
+ "sampling_rate": 16000,
31
+ "filter_length": 1280,
32
+ "hop_length": 320,
33
+ "win_length": 1280,
34
+ "n_mel_channels": 80,
35
+ "mel_fmin": 0,
36
+ "mel_fmax": 8000,
37
+ "add_blank": true,
38
+ "n_speakers": 0,
39
+ "cleaned_text": true,
40
+ "aug_rate": 1.0,
41
+ "top_db": 20
42
+ },
43
+ "model": {
44
+ "inter_channels": 192,
45
+ "hidden_channels": 192,
46
+ "filter_channels": 768,
47
+ "n_heads": 2,
48
+ "n_layers": 6,
49
+ "kernel_size": 3,
50
+ "p_dropout": 0.1,
51
+ "resblock": "1",
52
+ "resblock_kernel_sizes": [3,7,11],
53
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
54
+ "upsample_rates": [4,5,4,2,2],
55
+ "upsample_initial_channel": 512,
56
+ "upsample_kernel_sizes": [8,11,8,4,4],
57
+ "n_layers_q": 3,
58
+ "use_spectral_norm": false,
59
+ "wav2vec_feature_layer": 7,
60
+ "gin_channels": 256,
61
+ "cfg": true,
62
+ "uncond_ratio": 0.1,
63
+ "prosody_size": 20
64
+
65
+ }
66
+ }
67
+
logs/hierspeechpp_eng_kor/hierspeechpp_v1_ckpt.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0229501cd273135bce9ee0be09ddef18e079cb8dbe61cda665fec73afbfad0d4
3
+ size 388970075
logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54d2aff8f92ff66669ef8a48ee2b604b52190fa2c421e8a20c39596cdebf9c43
3
+ size 388970075
logs/ttv_libritts_v1/config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 10000,
5
+ "save_interval": 10000,
6
+ "seed": 1234,
7
+ "epochs": 20000,
8
+ "learning_rate": 2e-4,
9
+ "betas": [0.8, 0.99],
10
+ "eps": 1e-9,
11
+ "batch_size": 32,
12
+ "fp16_run": false,
13
+ "lr_decay": 0.999,
14
+ "segment_size": 192000,
15
+ "init_lr_ratio": 1,
16
+ "warmup_epochs": 0,
17
+ "c_mel": 10,
18
+ "c_kl": 0.1,
19
+ "c_pho": 45.0,
20
+ "c_f0": 1,
21
+ "aug": true
22
+ },
23
+ "data": {
24
+ "train_filelist_path": "filelists/train_wav.txt",
25
+ "test_filelist_path": "filelists/test_wav.txt",
26
+ "text_cleaners":["english_cleaners2"],
27
+ "max_wav_value": 32768.0,
28
+ "sampling_rate": 16000,
29
+ "filter_length": 1280,
30
+ "hop_length": 320,
31
+ "win_length": 1280,
32
+ "n_mel_channels": 80,
33
+ "mel_fmin": 0,
34
+ "mel_fmax": 8000,
35
+ "add_blank": true,
36
+ "n_speakers": 0,
37
+ "cleaned_text": true,
38
+ "aug_rate": 1.0,
39
+ "top_db": 20
40
+ },
41
+ "model": {
42
+ "inter_channels": 256,
43
+ "hidden_channels": 256,
44
+ "filter_channels": 1024,
45
+ "n_heads": 4,
46
+ "n_layers": 6,
47
+ "kernel_size": 3,
48
+ "p_dropout": 0.1,
49
+ "resblock": "1",
50
+ "resblock_kernel_sizes": [3,7,11],
51
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
52
+ "use_spectral_norm": false
53
+ }
54
+ }
55
+
logs/ttv_libritts_v1/ttv_lt960_ckpt.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e408e2c6a72551da0ca616f43e0f989449ff5e0d0ca6229b27dea3dc36aa6c1
3
+ size 434482782
modules.py ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from torch.nn import Conv1d
7
+ from torch.nn.utils import weight_norm, remove_weight_norm
8
+
9
+ import commons
10
+ from commons import init_weights, get_padding
11
+ from transforms import piecewise_rational_quadratic_transform
12
+
13
+ from timm.models.vision_transformer import Attention
14
+ from itertools import repeat
15
+ import collections.abc
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+ class LayerNorm(nn.Module):
20
+ def __init__(self, channels, eps=1e-5):
21
+ super().__init__()
22
+ self.channels = channels
23
+ self.eps = eps
24
+
25
+ self.gamma = nn.Parameter(torch.ones(channels))
26
+ self.beta = nn.Parameter(torch.zeros(channels))
27
+
28
+ def forward(self, x):
29
+ x = x.transpose(1, -1)
30
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
31
+ return x.transpose(1, -1)
32
+
33
+
34
+ class ConvReluNorm(nn.Module):
35
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
36
+ super().__init__()
37
+ self.in_channels = in_channels
38
+ self.hidden_channels = hidden_channels
39
+ self.out_channels = out_channels
40
+ self.kernel_size = kernel_size
41
+ self.n_layers = n_layers
42
+ self.p_dropout = p_dropout
43
+ assert n_layers > 1, "Number of layers should be larger than 0."
44
+
45
+ self.conv_layers = nn.ModuleList()
46
+ self.norm_layers = nn.ModuleList()
47
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
48
+ self.norm_layers.append(LayerNorm(hidden_channels))
49
+ self.relu_drop = nn.Sequential(
50
+ nn.ReLU(),
51
+ nn.Dropout(p_dropout))
52
+ for _ in range(n_layers - 1):
53
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
54
+ self.norm_layers.append(LayerNorm(hidden_channels))
55
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
56
+ self.proj.weight.data.zero_()
57
+ self.proj.bias.data.zero_()
58
+
59
+ def forward(self, x, x_mask):
60
+ x_org = x
61
+ for i in range(self.n_layers):
62
+ x = self.conv_layers[i](x * x_mask)
63
+ x = self.norm_layers[i](x)
64
+ x = self.relu_drop(x)
65
+ x = x_org + self.proj(x)
66
+ return x * x_mask
67
+
68
+
69
+ class DDSConv(nn.Module):
70
+ """
71
+ Dialted and Depth-Separable Convolution
72
+ """
73
+
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert (kernel_size % 2 == 1)
115
+ self.hidden_channels = hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:, :self.hidden_channels, :]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:, self.hidden_channels:, :]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels, 1))
285
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout,
320
+ gin_channels=gin_channels)
321
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
322
+ self.post.weight.data.zero_()
323
+ self.post.bias.data.zero_()
324
+
325
+ def forward(self, x, x_mask, g=None, reverse=False):
326
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
327
+ h = self.pre(x0) * x_mask
328
+ h = self.enc(h, x_mask, g=g)
329
+ stats = self.post(h) * x_mask
330
+ if not self.mean_only:
331
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
332
+ else:
333
+ m = stats
334
+ logs = torch.zeros_like(m)
335
+
336
+ if not reverse:
337
+ x1 = m + x1 * torch.exp(logs) * x_mask
338
+ x = torch.cat([x0, x1], 1)
339
+ logdet = torch.sum(logs, [1, 2])
340
+ return x, logdet
341
+ else:
342
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
343
+ x = torch.cat([x0, x1], 1)
344
+ return x
345
+
346
+ def modulate(x, shift, scale):
347
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
348
+
349
+ def _ntuple(n):
350
+ def parse(x):
351
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
352
+ return tuple(x)
353
+ return tuple(repeat(x, n))
354
+ return parse
355
+ to_2tuple = _ntuple(2)
356
+
357
+ class FFN_Conv(nn.Module):
358
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks
359
+ """
360
+ def __init__(
361
+ self,
362
+ in_features,
363
+ hidden_features=None,
364
+ out_features=None,
365
+ act_layer=nn.GELU,
366
+ norm_layer=None,
367
+ bias=True,
368
+ kernel=5,
369
+ p_dropout=0.1
370
+ ):
371
+ super().__init__()
372
+ out_features = out_features or in_features
373
+ hidden_features = hidden_features or in_features
374
+ bias = to_2tuple(bias)
375
+
376
+ self.fc1 = nn.Conv1d(in_features, hidden_features, kernel_size=kernel, stride=1, padding=(kernel-1)//2, bias=bias[0])
377
+ self.act = act_layer()
378
+ self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
379
+ self.fc2 = nn.Conv1d(hidden_features, out_features, kernel_size=1, bias=bias[1])
380
+ self.drop = nn.Dropout(p_dropout)
381
+
382
+ def forward(self, x, x_mask):
383
+ x = self.fc1(x.transpose(1,2))
384
+ x = self.act(x)
385
+ x = self.drop(x)
386
+ x = self.fc2(x*x_mask) * x_mask
387
+ x = self.drop(x)
388
+ return x.transpose(1,2)
389
+
390
+ class DiTConVBlock(nn.Module):
391
+ """
392
+ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
393
+ """
394
+ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, kernel=9, p_dropout=0.1, **block_kwargs):
395
+ super().__init__()
396
+ self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
397
+ self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
398
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
399
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
400
+ approx_gelu = lambda: nn.GELU(approximate="tanh")
401
+ self.mlp = FFN_Conv(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, kernel=kernel, p_dropout=p_dropout)
402
+ self.adaLN_modulation = nn.Sequential(
403
+ nn.SiLU(),
404
+ nn.Linear(hidden_size, 6 * hidden_size, bias=True)
405
+ )
406
+ def forward(self, x, c, x_mask):
407
+ x = x*x_mask
408
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
409
+ x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x)*x_mask, shift_msa, scale_msa))*x_mask
410
+ x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp), x_mask.transpose(1,2))
411
+ return x
412
+
413
+ class ResidualCouplingLayer_Transformer_simple(nn.Module):
414
+ def __init__(self,
415
+ channels,
416
+ hidden_channels,
417
+ kernel_size,
418
+ dilation_rate,
419
+ n_layers,
420
+ p_dropout=0.1,
421
+ mean_only=False):
422
+ assert channels % 2 == 0, "channels should be divisible by 2"
423
+ super().__init__()
424
+ self.channels = channels
425
+ self.hidden_channels = hidden_channels
426
+ self.kernel_size = kernel_size
427
+ self.dilation_rate = dilation_rate
428
+ self.n_layers = n_layers
429
+ self.half_channels = channels // 2
430
+ self.mean_only = mean_only
431
+
432
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
433
+
434
+ self.enc_block = torch.nn.ModuleList([
435
+ DiTConVBlock(hidden_channels, 2, mlp_ratio=4.0, kernel=5, p_dropout=p_dropout) for _ in range(n_layers)
436
+ ])
437
+
438
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
439
+
440
+ self.initialize_weights()
441
+
442
+ self.post.weight.data.zero_()
443
+ self.post.bias.data.zero_()
444
+
445
+ def initialize_weights(self):
446
+ # Initialize transformer layers:
447
+ def _basic_init(module):
448
+ if isinstance(module, (nn.Conv1d, nn.Linear)):
449
+ torch.nn.init.xavier_uniform_(module.weight)
450
+ if module.bias is not None:
451
+ nn.init.constant_(module.bias, 0)
452
+
453
+ self.apply(_basic_init)
454
+ # Zero-out adaLN modulation layers in DiT blocks:
455
+ for block in self.enc_block:
456
+ nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
457
+ nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
458
+
459
+ def forward(self, x, x_mask, g=None, reverse=False):
460
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
461
+ h = self.pre(x0) * x_mask
462
+
463
+ # h = self.enc(h, x_mask, g=g)
464
+ h = h.transpose(1,2)
465
+ x_mask = x_mask.transpose(1,2)
466
+
467
+ for blk in self.enc_block:
468
+ h = blk(h, g, x_mask)
469
+
470
+ x_mask = x_mask.transpose(1,2)
471
+ h = h.transpose(1,2)
472
+
473
+ stats = self.post(h) * x_mask
474
+ if not self.mean_only:
475
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
476
+ else:
477
+ m = stats
478
+ logs = torch.zeros_like(m)
479
+
480
+ if not reverse:
481
+ x1 = m + x1 * torch.exp(logs) * x_mask
482
+ x = torch.cat([x0, x1], 1)
483
+ logdet = torch.sum(logs, [1, 2])
484
+ return x, logdet
485
+ else:
486
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
487
+ x = torch.cat([x0, x1], 1)
488
+ return x
489
+
490
+ class ConvFlow(nn.Module):
491
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
492
+ super().__init__()
493
+ self.in_channels = in_channels
494
+ self.filter_channels = filter_channels
495
+ self.kernel_size = kernel_size
496
+ self.n_layers = n_layers
497
+ self.num_bins = num_bins
498
+ self.tail_bound = tail_bound
499
+ self.half_channels = in_channels // 2
500
+
501
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
502
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
503
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
504
+ self.proj.weight.data.zero_()
505
+ self.proj.bias.data.zero_()
506
+
507
+ def forward(self, x, x_mask, g=None, reverse=False):
508
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
509
+ h = self.pre(x0)
510
+ h = self.convs(h, x_mask, g=g)
511
+ h = self.proj(h) * x_mask
512
+
513
+ b, c, t = x0.shape
514
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
515
+
516
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
517
+ unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels)
518
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
519
+
520
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
521
+ unnormalized_widths,
522
+ unnormalized_heights,
523
+ unnormalized_derivatives,
524
+ inverse=reverse,
525
+ tails='linear',
526
+ tail_bound=self.tail_bound
527
+ )
528
+
529
+ x = torch.cat([x0, x1], 1) * x_mask
530
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
531
+ if not reverse:
532
+ return x, logdet
533
+ else:
534
+ return x
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AMFM_decompy==1.0.11
2
+ Cython==3.0.3
3
+ einops==0.7.0
4
+ joblib==1.3.2
5
+ matplotlib==3.8.1
6
+ numpy==1.26.1
7
+ pesq==0.0.4
8
+ phonemizer==3.2.1
9
+ scipy==1.11.3
10
+ timm==0.6.13
11
+ torch==1.13.1+cu117
12
+ torchaudio==0.13.1+cu117
13
+ tqdm==4.65.0
14
+ transformers==4.34.0
15
+ Unidecode==1.3.7
results/reference_1.wav ADDED
Binary file (528 kB). View file
 
results/reference_2.wav ADDED
Binary file (505 kB). View file
 
results/reference_3.wav ADDED
Binary file (378 kB). View file
 
results/reference_4.wav ADDED
Binary file (699 kB). View file
 
speechsr24k/G_340000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94bc84b6f8bdb375e2027bc7a3222730d29f9d4c042fd9edce0024806d5c4320
3
+ size 1715101
speechsr24k/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ {
3
+ "train": {
4
+ "log_interval": 200,
5
+ "eval_interval": 10000,
6
+ "save_interval": 10000,
7
+ "seed": 1234,
8
+ "epochs": 20000,
9
+ "learning_rate": 1e-4,
10
+ "betas": [0.8, 0.99],
11
+ "eps": 1e-9,
12
+ "batch_size": 32,
13
+ "fp16_run": false,
14
+ "lr_decay": 0.999,
15
+ "segment_size": 9600,
16
+ "init_lr_ratio": 1,
17
+ "warmup_epochs": 0,
18
+ "c_mel": 45
19
+ },
20
+ "data": {
21
+ "train_filelist_path": "filelists/train_24k_bigvgan_sr.txt",
22
+ "test_filelist_path": "filelists/test_24k_bigvgan_sr.txt",
23
+ "text_cleaners":["english_cleaners2"],
24
+ "max_wav_value": 32768.0,
25
+ "sampling_rate": 24000,
26
+ "filter_length": 960,
27
+ "hop_length": 240,
28
+ "win_length": 960,
29
+ "n_mel_channels": 100,
30
+ "mel_fmin": 0,
31
+ "mel_fmax": 12000,
32
+ "add_blank": true,
33
+ "n_speakers": 0,
34
+ "cleaned_text": true,
35
+ "aug_rate": 1.0,
36
+ "top_db": 20
37
+ },
38
+ "model": {
39
+ "resblock": "0",
40
+ "resblock_kernel_sizes": [3,7,11],
41
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
42
+ "upsample_rates": [3],
43
+ "upsample_initial_channel": 32,
44
+ "upsample_kernel_sizes": [3],
45
+ "use_spectral_norm": false
46
+
47
+ }
48
+ }
49
+
speechsr24k/speechsr.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+ import modules
5
+
6
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
7
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
8
+ from commons import init_weights, get_padding
9
+ from torch.cuda.amp import autocast
10
+ import torchaudio
11
+ from einops import rearrange
12
+
13
+ from alias_free_torch import *
14
+ import activations
15
+
16
+ class AMPBlock0(torch.nn.Module):
17
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
18
+ super(AMPBlock0, self).__init__()
19
+
20
+ self.convs1 = nn.ModuleList([
21
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
22
+ padding=get_padding(kernel_size, dilation[0]))),
23
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
24
+ padding=get_padding(kernel_size, dilation[1]))),
25
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
26
+ padding=get_padding(kernel_size, dilation[2]))),
27
+ ])
28
+ self.convs1.apply(init_weights)
29
+
30
+ self.convs2 = nn.ModuleList([
31
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
32
+ padding=get_padding(kernel_size, 1))),
33
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
34
+ padding=get_padding(kernel_size, 1))),
35
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
36
+ padding=get_padding(kernel_size, 1))),
37
+ ])
38
+ self.convs2.apply(init_weights)
39
+
40
+ self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
41
+
42
+
43
+ self.activations = nn.ModuleList([
44
+ Activation1d(
45
+ activation=activations.SnakeBeta(channels, alpha_logscale=True))
46
+ for _ in range(self.num_layers)
47
+ ])
48
+
49
+ def forward(self, x):
50
+ acts1, acts2 = self.activations[::2], self.activations[1::2]
51
+ for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
52
+ xt = a1(x)
53
+ xt = c1(xt)
54
+ xt = a2(xt)
55
+ xt = c2(xt)
56
+ x = xt + x
57
+
58
+ return x
59
+
60
+ def remove_weight_norm(self):
61
+ for l in self.convs1:
62
+ remove_weight_norm(l)
63
+ for l in self.convs2:
64
+ remove_weight_norm(l)
65
+
66
+
67
+ class Generator(torch.nn.Module):
68
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
69
+ super(Generator, self).__init__()
70
+ self.num_kernels = len(resblock_kernel_sizes)
71
+ self.num_upsamples = len(upsample_rates)
72
+
73
+ self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
74
+ resblock = AMPBlock0
75
+
76
+ self.resblocks = nn.ModuleList()
77
+ for i in range(1):
78
+ ch = upsample_initial_channel//(2**(i))
79
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
80
+ self.resblocks.append(resblock(ch, k, d, activation="snakebeta"))
81
+
82
+ activation_post = activations.SnakeBeta(ch, alpha_logscale=True)
83
+ self.activation_post = Activation1d(activation=activation_post)
84
+
85
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
86
+ if gin_channels != 0:
87
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
88
+
89
+ def forward(self, x, g=None):
90
+ x = self.conv_pre(x)
91
+ if g is not None:
92
+ x = x + self.cond(g)
93
+
94
+ for i in range(self.num_upsamples):
95
+
96
+ x = F.interpolate(x, int(x.shape[-1] * 1.5), mode='linear')
97
+ xs = None
98
+ for j in range(self.num_kernels):
99
+ if xs is None:
100
+ xs = self.resblocks[i*self.num_kernels+j](x)
101
+ else:
102
+ xs += self.resblocks[i*self.num_kernels+j](x)
103
+ x = xs / self.num_kernels
104
+
105
+ x = self.activation_post(x)
106
+ x = self.conv_post(x)
107
+ x = torch.tanh(x)
108
+
109
+ return x
110
+
111
+ def remove_weight_norm(self):
112
+ print('Removing weight norm...')
113
+ for l in self.resblocks:
114
+ l.remove_weight_norm()
115
+ remove_weight_norm(self.conv_pre)
116
+
117
+ class DiscriminatorP(torch.nn.Module):
118
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
119
+ super(DiscriminatorP, self).__init__()
120
+ self.period = period
121
+ self.use_spectral_norm = use_spectral_norm
122
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
123
+ self.convs = nn.ModuleList([
124
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
125
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
126
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
127
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
128
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
129
+ ])
130
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
131
+
132
+ def forward(self, x):
133
+ fmap = []
134
+
135
+ # 1d to 2d
136
+ b, c, t = x.shape
137
+ if t % self.period != 0: # pad first
138
+ n_pad = self.period - (t % self.period)
139
+ x = F.pad(x, (0, n_pad), "reflect")
140
+ t = t + n_pad
141
+ x = x.view(b, c, t // self.period, self.period)
142
+
143
+ for l in self.convs:
144
+ x = l(x)
145
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
146
+ fmap.append(x)
147
+ x = self.conv_post(x)
148
+ fmap.append(x)
149
+ x = torch.flatten(x, 1, -1)
150
+
151
+ return x, fmap
152
+
153
+ class DiscriminatorR(torch.nn.Module):
154
+ def __init__(self, resolution, use_spectral_norm=False):
155
+ super(DiscriminatorR, self).__init__()
156
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
157
+
158
+ n_fft, hop_length, win_length = resolution
159
+ self.spec_transform = torchaudio.transforms.Spectrogram(
160
+ n_fft=n_fft, hop_length=hop_length, win_length=win_length, window_fn=torch.hann_window,
161
+ normalized=True, center=False, pad_mode=None, power=None)
162
+
163
+ self.convs = nn.ModuleList([
164
+ norm_f(nn.Conv2d(2, 32, (3, 9), padding=(1, 4))),
165
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),
166
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(2,1), padding=(2, 4))),
167
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(4,1), padding=(4, 4))),
168
+ norm_f(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))),
169
+ ])
170
+ self.conv_post = norm_f(nn.Conv2d(32, 1, (3, 3), padding=(1, 1)))
171
+
172
+ def forward(self, y):
173
+ fmap = []
174
+
175
+ x = self.spec_transform(y) # [B, 2, Freq, Frames, 2]
176
+ x = torch.cat([x.real, x.imag], dim=1)
177
+ x = rearrange(x, 'b c w t -> b c t w')
178
+
179
+ for l in self.convs:
180
+ x = l(x)
181
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
182
+ fmap.append(x)
183
+ x = self.conv_post(x)
184
+ fmap.append(x)
185
+ x = torch.flatten(x, 1, -1)
186
+
187
+ return x, fmap
188
+
189
+
190
+ class MultiPeriodDiscriminator(torch.nn.Module):
191
+ def __init__(self, use_spectral_norm=False):
192
+ super(MultiPeriodDiscriminator, self).__init__()
193
+ periods = [2,3,5,7,11]
194
+ resolutions = [[2048, 512, 2048], [1024, 256, 1024], [512, 128, 512], [256, 64, 256], [128, 32, 128]]
195
+
196
+ discs = [DiscriminatorR(resolutions[i], use_spectral_norm=use_spectral_norm) for i in range(len(resolutions))]
197
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
198
+ self.discriminators = nn.ModuleList(discs)
199
+
200
+ def forward(self, y, y_hat):
201
+ y_d_rs = []
202
+ y_d_gs = []
203
+ fmap_rs = []
204
+ fmap_gs = []
205
+ for i, d in enumerate(self.discriminators):
206
+ y_d_r, fmap_r = d(y)
207
+ y_d_g, fmap_g = d(y_hat)
208
+ y_d_rs.append(y_d_r)
209
+ y_d_gs.append(y_d_g)
210
+ fmap_rs.append(fmap_r)
211
+ fmap_gs.append(fmap_g)
212
+
213
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
214
+
215
+ class SynthesizerTrn(nn.Module):
216
+ """
217
+ Synthesizer for Training
218
+ """
219
+
220
+ def __init__(self,
221
+
222
+ spec_channels,
223
+ segment_size,
224
+ resblock,
225
+ resblock_kernel_sizes,
226
+ resblock_dilation_sizes,
227
+ upsample_rates,
228
+ upsample_initial_channel,
229
+ upsample_kernel_sizes,
230
+ **kwargs):
231
+
232
+ super().__init__()
233
+ self.spec_channels = spec_channels
234
+ self.resblock = resblock
235
+ self.resblock_kernel_sizes = resblock_kernel_sizes
236
+ self.resblock_dilation_sizes = resblock_dilation_sizes
237
+ self.upsample_rates = upsample_rates
238
+ self.upsample_initial_channel = upsample_initial_channel
239
+ self.upsample_kernel_sizes = upsample_kernel_sizes
240
+ self.segment_size = segment_size
241
+
242
+ self.dec = Generator(1, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes)
243
+
244
+ def forward(self, x):
245
+
246
+ y = self.dec(x)
247
+ return y
248
+ @torch.no_grad()
249
+ def infer(self, x, max_len=None):
250
+
251
+ o = self.dec(x[:,:,:max_len])
252
+ return o
253
+
speechsr48k/G_100000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c70874ac4efeb4dc9c8aa9dc0a611a951e1c36292abeb4c406d7fb91e0eefc
3
+ size 1715101
speechsr48k/config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ {
3
+ "train": {
4
+ "log_interval": 200,
5
+ "eval_interval": 10000,
6
+ "save_interval": 10000,
7
+ "seed": 1234,
8
+ "epochs": 20000,
9
+ "learning_rate": 1e-4,
10
+ "betas": [0.8, 0.99],
11
+ "eps": 1e-9,
12
+ "batch_size": 32,
13
+ "fp16_run": false,
14
+ "lr_decay": 0.995,
15
+ "segment_size": 9600,
16
+ "init_lr_ratio": 1,
17
+ "warmup_epochs": 0,
18
+ "c_mel": 45
19
+ },
20
+ "data": {
21
+ "train_filelist_path": "filelists/train_48k_vctk_trim_bigvgan_sr.txt",
22
+ "test_filelist_path": "filelists/test_48k_vctk_trim_bigvgan_sr.txt",
23
+ "text_cleaners":["english_cleaners2"],
24
+ "max_wav_value": 32768.0,
25
+ "sampling_rate": 48000,
26
+ "filter_length": 1280,
27
+ "hop_length": 320,
28
+ "win_length": 1280,
29
+ "n_mel_channels": 128,
30
+ "mel_fmin": 0,
31
+ "mel_fmax": 24000,
32
+ "add_blank": true,
33
+ "n_speakers": 0,
34
+ "cleaned_text": true,
35
+ "aug_rate": 1.0,
36
+ "top_db": 20
37
+ },
38
+ "model": {
39
+ "resblock": "0",
40
+ "resblock_kernel_sizes": [3,7,11],
41
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
42
+ "upsample_rates": [3],
43
+ "upsample_initial_channel": 32,
44
+ "upsample_kernel_sizes": [3],
45
+ "use_spectral_norm": false
46
+ }
47
+ }
48
+
speechsr48k/speechsr.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+ import modules
5
+
6
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
7
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
8
+ from commons import init_weights, get_padding
9
+ from torch.cuda.amp import autocast
10
+ import torchaudio
11
+ from einops import rearrange
12
+
13
+ from alias_free_torch import *
14
+ import activations
15
+
16
+ class AMPBlock0(torch.nn.Module):
17
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
18
+ super(AMPBlock0, self).__init__()
19
+
20
+ self.convs1 = nn.ModuleList([
21
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
22
+ padding=get_padding(kernel_size, dilation[0]))),
23
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
24
+ padding=get_padding(kernel_size, dilation[1]))),
25
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
26
+ padding=get_padding(kernel_size, dilation[2]))),
27
+ ])
28
+ self.convs1.apply(init_weights)
29
+
30
+ self.convs2 = nn.ModuleList([
31
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
32
+ padding=get_padding(kernel_size, 1))),
33
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
34
+ padding=get_padding(kernel_size, 1))),
35
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
36
+ padding=get_padding(kernel_size, 1))),
37
+ ])
38
+ self.convs2.apply(init_weights)
39
+
40
+ self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
41
+
42
+
43
+ self.activations = nn.ModuleList([
44
+ Activation1d(
45
+ activation=activations.SnakeBeta(channels, alpha_logscale=True))
46
+ for _ in range(self.num_layers)
47
+ ])
48
+
49
+ def forward(self, x):
50
+ acts1, acts2 = self.activations[::2], self.activations[1::2]
51
+ for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
52
+ xt = a1(x)
53
+ xt = c1(xt)
54
+ xt = a2(xt)
55
+ xt = c2(xt)
56
+ x = xt + x
57
+
58
+ return x
59
+
60
+ def remove_weight_norm(self):
61
+ for l in self.convs1:
62
+ remove_weight_norm(l)
63
+ for l in self.convs2:
64
+ remove_weight_norm(l)
65
+
66
+
67
+ class Generator(torch.nn.Module):
68
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
69
+ super(Generator, self).__init__()
70
+ self.num_kernels = len(resblock_kernel_sizes)
71
+ self.num_upsamples = len(upsample_rates)
72
+
73
+ self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
74
+ resblock = AMPBlock0
75
+
76
+ self.resblocks = nn.ModuleList()
77
+ for i in range(1):
78
+ ch = upsample_initial_channel//(2**(i))
79
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
80
+ self.resblocks.append(resblock(ch, k, d, activation="snakebeta"))
81
+
82
+ activation_post = activations.SnakeBeta(ch, alpha_logscale=True)
83
+ self.activation_post = Activation1d(activation=activation_post)
84
+
85
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
86
+ if gin_channels != 0:
87
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
88
+
89
+ def forward(self, x, g=None):
90
+ x = self.conv_pre(x)
91
+ if g is not None:
92
+ x = x + self.cond(g)
93
+
94
+ for i in range(self.num_upsamples):
95
+
96
+ x = F.interpolate(x, int(x.shape[-1] * 3), mode='linear')
97
+ xs = None
98
+ for j in range(self.num_kernels):
99
+ if xs is None:
100
+ xs = self.resblocks[i*self.num_kernels+j](x)
101
+ else:
102
+ xs += self.resblocks[i*self.num_kernels+j](x)
103
+ x = xs / self.num_kernels
104
+
105
+ x = self.activation_post(x)
106
+ x = self.conv_post(x)
107
+ x = torch.tanh(x)
108
+
109
+ return x
110
+
111
+ def remove_weight_norm(self):
112
+ print('Removing weight norm...')
113
+ for l in self.resblocks:
114
+ l.remove_weight_norm()
115
+
116
+ class DiscriminatorP(torch.nn.Module):
117
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
118
+ super(DiscriminatorP, self).__init__()
119
+ self.period = period
120
+ self.use_spectral_norm = use_spectral_norm
121
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
122
+ self.convs = nn.ModuleList([
123
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
124
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
125
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
126
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
127
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
128
+ ])
129
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
130
+
131
+ def forward(self, x):
132
+ fmap = []
133
+
134
+ # 1d to 2d
135
+ b, c, t = x.shape
136
+ if t % self.period != 0: # pad first
137
+ n_pad = self.period - (t % self.period)
138
+ x = F.pad(x, (0, n_pad), "reflect")
139
+ t = t + n_pad
140
+ x = x.view(b, c, t // self.period, self.period)
141
+
142
+ for l in self.convs:
143
+ x = l(x)
144
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
145
+ fmap.append(x)
146
+ x = self.conv_post(x)
147
+ fmap.append(x)
148
+ x = torch.flatten(x, 1, -1)
149
+
150
+ return x, fmap
151
+
152
+ class DiscriminatorR(torch.nn.Module):
153
+ def __init__(self, resolution, use_spectral_norm=False):
154
+ super(DiscriminatorR, self).__init__()
155
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
156
+
157
+ n_fft, hop_length, win_length = resolution
158
+ self.spec_transform = torchaudio.transforms.Spectrogram(
159
+ n_fft=n_fft, hop_length=hop_length, win_length=win_length, window_fn=torch.hann_window,
160
+ normalized=True, center=False, pad_mode=None, power=None)
161
+
162
+ self.convs = nn.ModuleList([
163
+ norm_f(nn.Conv2d(2, 32, (3, 9), padding=(1, 4))),
164
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),
165
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(2,1), padding=(2, 4))),
166
+ norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(4,1), padding=(4, 4))),
167
+ norm_f(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))),
168
+ ])
169
+ self.conv_post = norm_f(nn.Conv2d(32, 1, (3, 3), padding=(1, 1)))
170
+
171
+ def forward(self, y):
172
+ fmap = []
173
+
174
+ x = self.spec_transform(y) # [B, 2, Freq, Frames, 2]
175
+ x = torch.cat([x.real, x.imag], dim=1)
176
+ x = rearrange(x, 'b c w t -> b c t w')
177
+
178
+ for l in self.convs:
179
+ x = l(x)
180
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
181
+ fmap.append(x)
182
+ x = self.conv_post(x)
183
+ fmap.append(x)
184
+ x = torch.flatten(x, 1, -1)
185
+
186
+ return x, fmap
187
+
188
+
189
+ class MultiPeriodDiscriminator(torch.nn.Module):
190
+ def __init__(self, use_spectral_norm=False):
191
+ super(MultiPeriodDiscriminator, self).__init__()
192
+ periods = [2,3,5,7,11]
193
+ resolutions = [[4096, 1024, 4096], [2048, 512, 2048], [1024, 256, 1024], [512, 128, 512], [256, 64, 256], [128, 32, 128]]
194
+
195
+ discs = [DiscriminatorR(resolutions[i], use_spectral_norm=use_spectral_norm) for i in range(len(resolutions))]
196
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
197
+ self.discriminators = nn.ModuleList(discs)
198
+
199
+ def forward(self, y, y_hat):
200
+ y_d_rs = []
201
+ y_d_gs = []
202
+ fmap_rs = []
203
+ fmap_gs = []
204
+ for i, d in enumerate(self.discriminators):
205
+ y_d_r, fmap_r = d(y)
206
+ y_d_g, fmap_g = d(y_hat)
207
+ y_d_rs.append(y_d_r)
208
+ y_d_gs.append(y_d_g)
209
+ fmap_rs.append(fmap_r)
210
+ fmap_gs.append(fmap_g)
211
+
212
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
213
+
214
+ class SynthesizerTrn(nn.Module):
215
+ """
216
+ Synthesizer for Training
217
+ """
218
+
219
+ def __init__(self,
220
+
221
+ spec_channels,
222
+ segment_size,
223
+ resblock,
224
+ resblock_kernel_sizes,
225
+ resblock_dilation_sizes,
226
+ upsample_rates,
227
+ upsample_initial_channel,
228
+ upsample_kernel_sizes,
229
+ **kwargs):
230
+
231
+ super().__init__()
232
+ self.spec_channels = spec_channels
233
+ self.resblock = resblock
234
+ self.resblock_kernel_sizes = resblock_kernel_sizes
235
+ self.resblock_dilation_sizes = resblock_dilation_sizes
236
+ self.upsample_rates = upsample_rates
237
+ self.upsample_initial_channel = upsample_initial_channel
238
+ self.upsample_kernel_sizes = upsample_kernel_sizes
239
+ self.segment_size = segment_size
240
+
241
+ self.dec = Generator(1, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes)
242
+
243
+ def forward(self, x):
244
+
245
+ y = self.dec(x)
246
+ return y
247
+ @torch.no_grad()
248
+ def infer(self, x, max_len=None):
249
+
250
+ o = self.dec(x[:,:,:max_len])
251
+ return o
252
+
styleencoder.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import attentions
2
+ from torch import nn
3
+ import torch
4
+ from torch.nn import functional as F
5
+
6
+ class Mish(nn.Module):
7
+ def __init__(self):
8
+ super(Mish, self).__init__()
9
+ def forward(self, x):
10
+ return x * torch.tanh(F.softplus(x))
11
+
12
+
13
+ class Conv1dGLU(nn.Module):
14
+ '''
15
+ Conv1d + GLU(Gated Linear Unit) with residual connection.
16
+ For GLU refer to https://arxiv.org/abs/1612.08083 paper.
17
+ '''
18
+
19
+ def __init__(self, in_channels, out_channels, kernel_size, dropout):
20
+ super(Conv1dGLU, self).__init__()
21
+ self.out_channels = out_channels
22
+ self.conv1 = nn.Conv1d(in_channels, 2 * out_channels, kernel_size=kernel_size, padding=2)
23
+ self.dropout = nn.Dropout(dropout)
24
+
25
+ def forward(self, x):
26
+ residual = x
27
+ x = self.conv1(x)
28
+ x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
29
+ x = x1 * torch.sigmoid(x2)
30
+ x = residual + self.dropout(x)
31
+ return x
32
+
33
+ class StyleEncoder(torch.nn.Module):
34
+ def __init__(self, in_dim=513, hidden_dim=128, out_dim=256):
35
+
36
+ super().__init__()
37
+
38
+ self.in_dim = in_dim # Linear 513 wav2vec 2.0 1024
39
+ self.hidden_dim = hidden_dim
40
+ self.out_dim = out_dim
41
+ self.kernel_size = 5
42
+ self.n_head = 2
43
+ self.dropout = 0.1
44
+
45
+ self.spectral = nn.Sequential(
46
+ nn.Conv1d(self.in_dim, self.hidden_dim, 1),
47
+ Mish(),
48
+ nn.Dropout(self.dropout),
49
+ nn.Conv1d(self.hidden_dim, self.hidden_dim, 1),
50
+ Mish(),
51
+ nn.Dropout(self.dropout)
52
+ )
53
+
54
+ self.temporal = nn.Sequential(
55
+ Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
56
+ Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
57
+ )
58
+
59
+ self.slf_attn = attentions.MultiHeadAttention(self.hidden_dim, self.hidden_dim, self.n_head, p_dropout = self.dropout, proximal_bias= False, proximal_init=True)
60
+ self.atten_drop = nn.Dropout(self.dropout)
61
+ self.fc = nn.Conv1d(self.hidden_dim, self.out_dim, 1)
62
+
63
+ def forward(self, x, mask=None):
64
+
65
+ # spectral
66
+ x = self.spectral(x)*mask
67
+ # temporal
68
+ x = self.temporal(x)*mask
69
+
70
+ # self-attention
71
+ attn_mask = mask.unsqueeze(2) * mask.unsqueeze(-1)
72
+ y = self.slf_attn(x,x, attn_mask=attn_mask)
73
+ x = x+ self.atten_drop(y)
74
+
75
+ # fc
76
+ x = self.fc(x)
77
+
78
+ # temoral average pooling
79
+ w = self.temporal_avg_pool(x, mask=mask)
80
+
81
+ return w
82
+
83
+ def temporal_avg_pool(self, x, mask=None):
84
+ if mask is None:
85
+ out = torch.mean(x, dim=2)
86
+ else:
87
+ len_ = mask.sum(dim=2)
88
+ x = x.sum(dim=2)
89
+
90
+ out = torch.div(x, len_)
91
+ return out