lixiang46 commited on
Commit
e9f3ef9
·
1 Parent(s): 78697e3
Files changed (1) hide show
  1. app.py +40 -24
app.py CHANGED
@@ -75,9 +75,8 @@ MAX_SEED = np.iinfo(np.int32).max
75
  MAX_IMAGE_SIZE = 1024
76
 
77
  @spaces.GPU
78
- def infer(prompt,
79
  image = None,
80
- controlnet_type = "Depth",
81
  negative_prompt = "",
82
  seed = 0,
83
  randomize_seed = False,
@@ -91,14 +90,8 @@ def infer(prompt,
91
  seed = random.randint(0, MAX_SEED)
92
  generator = torch.Generator().manual_seed(seed)
93
  init_image = resize_image(image, MAX_IMAGE_SIZE)
94
- if controlnet_type == "Depth":
95
- pipe = pipe_depth.to("cuda")
96
- condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
97
- elif controlnet_type == "Canny":
98
- pipe = pipe_canny.to("cuda")
99
- condi_img = process_canny_condition(np.array(init_image))
100
- else:
101
- return None
102
  image = pipe(
103
  prompt= prompt ,
104
  image = init_image,
@@ -114,8 +107,38 @@ def infer(prompt,
114
  ).images[0]
115
  return [condi_img, image]
116
 
117
- def change_type(type):
118
- return type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
  canny_examples = [
121
  ["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
@@ -228,7 +251,7 @@ with gr.Blocks(css=css) as Kolors:
228
 
229
  with gr.Row():
230
  gr.Examples(
231
- fn = infer,
232
  examples = canny_examples,
233
  inputs = [prompt, image],
234
  outputs = [result],
@@ -236,29 +259,22 @@ with gr.Blocks(css=css) as Kolors:
236
  )
237
  with gr.Row():
238
  gr.Examples(
239
- fn = infer,
240
  examples = depth_examples,
241
  inputs = [prompt, image],
242
  outputs = [result],
243
  label = "Depth"
244
  )
245
 
 
246
  canny_button.click(
247
- fn = change_type,
248
- inputs = "Canny",
249
- outputs = controlnet_type
250
- ).then(
251
- fn = infer,
252
  inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
253
  outputs = [result]
254
  )
255
 
256
  depth_button.click(
257
- fn = change_type,
258
- inputs = "Depth",
259
- outputs = controlnet_type
260
- ).then(
261
- fn = infer,
262
  inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
263
  outputs = [result]
264
  )
 
75
  MAX_IMAGE_SIZE = 1024
76
 
77
  @spaces.GPU
78
+ def infer_depth(prompt,
79
  image = None,
 
80
  negative_prompt = "",
81
  seed = 0,
82
  randomize_seed = False,
 
90
  seed = random.randint(0, MAX_SEED)
91
  generator = torch.Generator().manual_seed(seed)
92
  init_image = resize_image(image, MAX_IMAGE_SIZE)
93
+ pipe = pipe_depth.to("cuda")
94
+ condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
 
 
 
 
 
 
95
  image = pipe(
96
  prompt= prompt ,
97
  image = init_image,
 
107
  ).images[0]
108
  return [condi_img, image]
109
 
110
+ @spaces.GPU
111
+ def infer_canny(prompt,
112
+ image = None,
113
+ negative_prompt = "",
114
+ seed = 0,
115
+ randomize_seed = False,
116
+ guidance_scale = 6.0,
117
+ num_inference_steps = 50,
118
+ controlnet_conditioning_scale = 0.7,
119
+ control_guidance_end = 0.9,
120
+ strength = 1.0
121
+ ):
122
+ if randomize_seed:
123
+ seed = random.randint(0, MAX_SEED)
124
+ generator = torch.Generator().manual_seed(seed)
125
+ init_image = resize_image(image, MAX_IMAGE_SIZE)
126
+ pipe = pipe_canny.to("cuda")
127
+ condi_img = process_canny_condition(np.array(init_image))
128
+ image = pipe(
129
+ prompt= prompt ,
130
+ image = init_image,
131
+ controlnet_conditioning_scale = controlnet_conditioning_scale,
132
+ control_guidance_end = control_guidance_end,
133
+ strength= strength ,
134
+ control_image = condi_img,
135
+ negative_prompt= negative_prompt ,
136
+ num_inference_steps= num_inference_steps,
137
+ guidance_scale= guidance_scale,
138
+ num_images_per_prompt=1,
139
+ generator=generator,
140
+ ).images[0]
141
+ return [condi_img, image]
142
 
143
  canny_examples = [
144
  ["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
 
251
 
252
  with gr.Row():
253
  gr.Examples(
254
+ fn = infer_canny,
255
  examples = canny_examples,
256
  inputs = [prompt, image],
257
  outputs = [result],
 
259
  )
260
  with gr.Row():
261
  gr.Examples(
262
+ fn = infer_depth,
263
  examples = depth_examples,
264
  inputs = [prompt, image],
265
  outputs = [result],
266
  label = "Depth"
267
  )
268
 
269
+
270
  canny_button.click(
271
+ fn = infer_canny,
 
 
 
 
272
  inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
273
  outputs = [result]
274
  )
275
 
276
  depth_button.click(
277
+ fn = infer_depth,
 
 
 
 
278
  inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
279
  outputs = [result]
280
  )