File size: 4,591 Bytes
3040ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import collections.abc as collections
from pathlib import Path
from typing import Optional

import h5py
import numpy as np
import torch

from . import logger
from .utils.io import list_h5_names
from .utils.parsers import parse_image_lists
from .utils.read_write_model import read_images_binary


def parse_names(prefix, names, names_all):
    if prefix is not None:
        if not isinstance(prefix, str):
            prefix = tuple(prefix)
        names = [n for n in names_all if n.startswith(prefix)]
        if len(names) == 0:
            raise ValueError(f"Could not find any image with the prefix `{prefix}`.")
    elif names is not None:
        if isinstance(names, (str, Path)):
            names = parse_image_lists(names)
        elif isinstance(names, collections.Iterable):
            names = list(names)
        else:
            raise ValueError(
                f"Unknown type of image list: {names}."
                "Provide either a list or a path to a list file."
            )
    else:
        names = names_all
    return names


def get_descriptors(names, path, name2idx=None, key="global_descriptor"):
    if name2idx is None:
        with h5py.File(str(path), "r", libver="latest") as fd:
            desc = [fd[n][key].__array__() for n in names]
    else:
        desc = []
        for n in names:
            with h5py.File(str(path[name2idx[n]]), "r", libver="latest") as fd:
                desc.append(fd[n][key].__array__())
    return torch.from_numpy(np.stack(desc, 0)).float()


def pairs_from_score_matrix(
    scores: torch.Tensor,
    invalid: np.array,
    num_select: int,
    min_score: Optional[float] = None,
):
    assert scores.shape == invalid.shape
    if isinstance(scores, np.ndarray):
        scores = torch.from_numpy(scores)
    invalid = torch.from_numpy(invalid).to(scores.device)
    if min_score is not None:
        invalid |= scores < min_score
    scores.masked_fill_(invalid, float("-inf"))

    topk = torch.topk(scores, num_select, dim=1)
    indices = topk.indices.cpu().numpy()
    valid = topk.values.isfinite().cpu().numpy()

    pairs = []
    for i, j in zip(*np.where(valid)):
        pairs.append((i, indices[i, j]))
    return pairs


def main(
    descriptors,
    output,
    num_matched,
    query_prefix=None,
    query_list=None,
    db_prefix=None,
    db_list=None,
    db_model=None,
    db_descriptors=None,
):
    logger.info("Extracting image pairs from a retrieval database.")

    # We handle multiple reference feature files.
    # We only assume that names are unique among them and map names to files.
    if db_descriptors is None:
        db_descriptors = descriptors
    if isinstance(db_descriptors, (Path, str)):
        db_descriptors = [db_descriptors]
    name2db = {n: i for i, p in enumerate(db_descriptors) for n in list_h5_names(p)}
    db_names_h5 = list(name2db.keys())
    query_names_h5 = list_h5_names(descriptors)

    if db_model:
        images = read_images_binary(db_model / "images.bin")
        db_names = [i.name for i in images.values()]
    else:
        db_names = parse_names(db_prefix, db_list, db_names_h5)
    if len(db_names) == 0:
        raise ValueError("Could not find any database image.")
    query_names = parse_names(query_prefix, query_list, query_names_h5)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    db_desc = get_descriptors(db_names, db_descriptors, name2db)
    query_desc = get_descriptors(query_names, descriptors)
    sim = torch.einsum("id,jd->ij", query_desc.to(device), db_desc.to(device))

    # Avoid self-matching
    self = np.array(query_names)[:, None] == np.array(db_names)[None]
    pairs = pairs_from_score_matrix(sim, self, num_matched, min_score=0)
    pairs = [(query_names[i], db_names[j]) for i, j in pairs]

    logger.info(f"Found {len(pairs)} pairs.")
    with open(output, "w") as f:
        f.write("\n".join(" ".join([i, j]) for i, j in pairs))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--descriptors", type=Path, required=True)
    parser.add_argument("--output", type=Path, required=True)
    parser.add_argument("--num_matched", type=int, required=True)
    parser.add_argument("--query_prefix", type=str, nargs="+")
    parser.add_argument("--query_list", type=Path)
    parser.add_argument("--db_prefix", type=str, nargs="+")
    parser.add_argument("--db_list", type=Path)
    parser.add_argument("--db_model", type=Path)
    parser.add_argument("--db_descriptors", type=Path)
    args = parser.parse_args()
    main(**args.__dict__)