Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
from pathlib import Path | |
import torch | |
import torchvision.transforms as transforms | |
from .. import MODEL_REPO_ID, logger | |
from ..utils.base_model import BaseModel | |
dedode_path = Path(__file__).parent / "../../third_party/DeDoDe" | |
sys.path.append(str(dedode_path)) | |
from DeDoDe import dedode_descriptor_B, dedode_detector_L | |
from DeDoDe.utils import to_pixel_coords | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class DeDoDe(BaseModel): | |
default_conf = { | |
"name": "dedode", | |
"model_detector_name": "dedode_detector_L.pth", | |
"model_descriptor_name": "dedode_descriptor_B.pth", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
"dense": False, # Now fixed to be false | |
} | |
required_inputs = [ | |
"image", | |
] | |
# Initialize the line matcher | |
def _init(self, conf): | |
model_detector_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, conf["model_detector_name"]), | |
) | |
model_descriptor_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, conf["model_descriptor_name"]), | |
) | |
logger.info("Loaded DarkFeat model: {}".format(model_detector_path)) | |
self.normalizer = transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
# load the model | |
weights_detector = torch.load(model_detector_path, map_location="cpu") | |
weights_descriptor = torch.load(model_descriptor_path, map_location="cpu") | |
self.detector = dedode_detector_L(weights=weights_detector, device=device) | |
self.descriptor = dedode_descriptor_B(weights=weights_descriptor, device=device) | |
logger.info("Load DeDoDe model done.") | |
def _forward(self, data): | |
""" | |
data: dict, keys: {'image0','image1'} | |
image shape: N x C x H x W | |
color mode: RGB | |
""" | |
img0 = self.normalizer(data["image"].squeeze()).float()[None] | |
H_A, W_A = img0.shape[2:] | |
# step 1: detect keypoints | |
detections_A = None | |
batch_A = {"image": img0} | |
if self.conf["dense"]: | |
detections_A = self.detector.detect_dense(batch_A) | |
else: | |
detections_A = self.detector.detect( | |
batch_A, num_keypoints=self.conf["max_keypoints"] | |
) | |
keypoints_A, P_A = detections_A["keypoints"], detections_A["confidence"] | |
# step 2: describe keypoints | |
# dim: 1 x N x 256 | |
description_A = self.descriptor.describe_keypoints(batch_A, keypoints_A)[ | |
"descriptions" | |
] | |
keypoints_A = to_pixel_coords(keypoints_A, H_A, W_A) | |
return { | |
"keypoints": keypoints_A, # 1 x N x 2 | |
"descriptors": description_A.permute(0, 2, 1), # 1 x 256 x N | |
"scores": P_A, # 1 x N | |
} | |