import sys from pathlib import Path import torch from .. import MODEL_REPO_ID, logger from ..utils.base_model import BaseModel alike_path = Path(__file__).parent / "../../third_party/ALIKE" sys.path.append(str(alike_path)) from alike import ALike as Alike_ from alike import configs device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Alike(BaseModel): default_conf = { "model_name": "alike-t", # 'alike-t', 'alike-s', 'alike-n', 'alike-l' "use_relu": True, "multiscale": False, "max_keypoints": 1000, "detection_threshold": 0.5, "top_k": -1, "sub_pixel": False, } required_inputs = ["image"] def _init(self, conf): model_path = self._download_model( repo_id=MODEL_REPO_ID, filename="{}/{}.pth".format(Path(__file__).stem, self.conf["model_name"]), ) logger.info("Loaded Alike model from {}".format(model_path)) configs[conf["model_name"]]["model_path"] = model_path self.net = Alike_( **configs[conf["model_name"]], device=device, top_k=conf["top_k"], scores_th=conf["detection_threshold"], n_limit=conf["max_keypoints"], ) logger.info("Load Alike model done.") def _forward(self, data): image = data["image"] image = image.permute(0, 2, 3, 1).squeeze() image = image.cpu().numpy() * 255.0 pred = self.net(image, sub_pixel=self.conf["sub_pixel"]) keypoints = pred["keypoints"] descriptors = pred["descriptors"] scores = pred["scores"] return { "keypoints": torch.from_numpy(keypoints)[None], "scores": torch.from_numpy(scores)[None], "descriptors": torch.from_numpy(descriptors.T)[None], }