import kornia from .. import logger from ..utils.base_model import BaseModel class DISK(BaseModel): default_conf = { "weights": "depth", "max_keypoints": None, "nms_window_size": 5, "detection_threshold": 0.0, "pad_if_not_divisible": True, } required_inputs = ["image"] def _init(self, conf): self.model = kornia.feature.DISK.from_pretrained(conf["weights"]) logger.info("Load DISK model done.") def _forward(self, data): image = data["image"] features = self.model( image, n=self.conf["max_keypoints"], window_size=self.conf["nms_window_size"], score_threshold=self.conf["detection_threshold"], pad_if_not_divisible=self.conf["pad_if_not_divisible"], ) return { "keypoints": [f.keypoints for f in features][0][None], "scores": [f.detection_scores for f in features][0][None], "descriptors": [f.descriptors.t() for f in features][0][None], }