import subprocess from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models from scipy.io import loadmat from .. import logger from ..utils.base_model import BaseModel EPS = 1e-6 class NetVLADLayer(nn.Module): def __init__(self, input_dim=512, K=64, score_bias=False, intranorm=True): super().__init__() self.score_proj = nn.Conv1d(input_dim, K, kernel_size=1, bias=score_bias) centers = nn.parameter.Parameter(torch.empty([input_dim, K])) nn.init.xavier_uniform_(centers) self.register_parameter("centers", centers) self.intranorm = intranorm self.output_dim = input_dim * K def forward(self, x): b = x.size(0) scores = self.score_proj(x) scores = F.softmax(scores, dim=1) diff = x.unsqueeze(2) - self.centers.unsqueeze(0).unsqueeze(-1) desc = (scores.unsqueeze(1) * diff).sum(dim=-1) if self.intranorm: # From the official MATLAB implementation. desc = F.normalize(desc, dim=1) desc = desc.view(b, -1) desc = F.normalize(desc, dim=1) return desc class NetVLAD(BaseModel): default_conf = {"model_name": "VGG16-NetVLAD-Pitts30K", "whiten": True} required_inputs = ["image"] # Models exported using # https://github.com/uzh-rpg/netvlad_tf_open/blob/master/matlab/net_class2struct.m. dir_models = { "VGG16-NetVLAD-Pitts30K": "https://cvg-data.inf.ethz.ch/hloc/netvlad/Pitts30K_struct.mat", "VGG16-NetVLAD-TokyoTM": "https://cvg-data.inf.ethz.ch/hloc/netvlad/TokyoTM_struct.mat", } def _init(self, conf): assert conf["model_name"] in self.dir_models.keys() # Download the checkpoint. checkpoint = Path(torch.hub.get_dir(), "netvlad", conf["model_name"] + ".mat") if not checkpoint.exists(): checkpoint.parent.mkdir(exist_ok=True, parents=True) link = self.dir_models[conf["model_name"]] cmd = ["wget", "--quiet", link, "-O", str(checkpoint)] logger.info(f"Downloading the NetVLAD model with `{cmd}`.") subprocess.run(cmd, check=True) # Create the network. # Remove classification head. backbone = list(models.vgg16().children())[0] # Remove last ReLU + MaxPool2d. self.backbone = nn.Sequential(*list(backbone.children())[:-2]) self.netvlad = NetVLADLayer() if conf["whiten"]: self.whiten = nn.Linear(self.netvlad.output_dim, 4096) # Parse MATLAB weights using https://github.com/uzh-rpg/netvlad_tf_open mat = loadmat(checkpoint, struct_as_record=False, squeeze_me=True) # CNN weights. for layer, mat_layer in zip(self.backbone.children(), mat["net"].layers): if isinstance(layer, nn.Conv2d): w = mat_layer.weights[0] # Shape: S x S x IN x OUT b = mat_layer.weights[1] # Shape: OUT # Prepare for PyTorch - enforce float32 and right shape. # w should have shape: OUT x IN x S x S # b should have shape: OUT w = torch.tensor(w).float().permute([3, 2, 0, 1]) b = torch.tensor(b).float() # Update layer weights. layer.weight = nn.Parameter(w) layer.bias = nn.Parameter(b) # NetVLAD weights. score_w = mat["net"].layers[30].weights[0] # D x K # centers are stored as opposite in official MATLAB code center_w = -mat["net"].layers[30].weights[1] # D x K # Prepare for PyTorch - make sure it is float32 and has right shape. # score_w should have shape K x D x 1 # center_w should have shape D x K score_w = torch.tensor(score_w).float().permute([1, 0]).unsqueeze(-1) center_w = torch.tensor(center_w).float() # Update layer weights. self.netvlad.score_proj.weight = nn.Parameter(score_w) self.netvlad.centers = nn.Parameter(center_w) # Whitening weights. if conf["whiten"]: w = mat["net"].layers[33].weights[0] # Shape: 1 x 1 x IN x OUT b = mat["net"].layers[33].weights[1] # Shape: OUT # Prepare for PyTorch - make sure it is float32 and has right shape w = torch.tensor(w).float().squeeze().permute([1, 0]) # OUT x IN b = torch.tensor(b.squeeze()).float() # Shape: OUT # Update layer weights. self.whiten.weight = nn.Parameter(w) self.whiten.bias = nn.Parameter(b) # Preprocessing parameters. self.preprocess = { "mean": mat["net"].meta.normalization.averageImage[0, 0], "std": np.array([1, 1, 1], dtype=np.float32), } def _forward(self, data): image = data["image"] assert image.shape[1] == 3 assert image.min() >= -EPS and image.max() <= 1 + EPS image = torch.clamp(image * 255, 0.0, 255.0) # Input should be 0-255. mean = self.preprocess["mean"] std = self.preprocess["std"] image = image - image.new_tensor(mean).view(1, -1, 1, 1) image = image / image.new_tensor(std).view(1, -1, 1, 1) # Feature extraction. descriptors = self.backbone(image) b, c, _, _ = descriptors.size() descriptors = descriptors.view(b, c, -1) # NetVLAD layer. descriptors = F.normalize(descriptors, dim=1) # Pre-normalization. desc = self.netvlad(descriptors) # Whiten if needed. if hasattr(self, "whiten"): desc = self.whiten(desc) desc = F.normalize(desc, dim=1) # Final L2 normalization. return {"global_descriptor": desc}