import os import requests import json import time import gradio as gr from transformers import AutoTokenizer import psycopg2 import socket hostname=socket.gethostname() IPAddr=socket.gethostbyname(hostname) print("Your Computer Name is:" + hostname) print("Your Computer IP Address is:" + IPAddr) DESCRIPTION = """ # MediaTek Research Breexe-8x7B Breexe-8x7B is a language model family that builds on top of [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1), specifically intended for Traditional Chinese use. [Breexe-8x7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breexe-8x7B-Instruct-v0_1) demonstrates impressive performance in benchmarks for Traditional Chinese and English, on par with OpenAI's gpt-3.5-turbo-1106. *A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.* **免責聲明: Breexe-8x7B-Instruct 並未針對問答進行安全保護,因此語言模型的任何回應不代表 MediaTek Research 立場。** """ LICENSE = """ """ DEFAULT_SYSTEM_PROMPT = "You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan." API_URL = os.environ.get("API_URL") TOKEN = os.environ.get("TOKEN") TOKENIZER_REPO = "MediaTek-Research/Breeze-7B-Instruct-v1_0" # tokenization methods are same as BreeXe API_MODEL_TYPE = "breexe-8x7b-instruct-v01" HEADERS = { "Authorization": f"Bearer {TOKEN}", "Content-Type": "application/json", "accept": "application/json" } MAX_SEC = 30 MAX_INPUT_LENGTH = 5000 tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_REPO, use_auth_token=os.environ.get("HF_TOKEN")) def refusal_condition(query): # 不要再問這些問題啦! query_remove_space = query.replace(' ', '').lower() is_including_tw = False for x in ['台灣', '台湾', 'taiwan', 'tw', '中華民國', '中华民国']: if x in query_remove_space: is_including_tw = True is_including_cn = False for x in ['中國', '中国', 'cn', 'china', '大陸', '內地', '大陆', '内地', '中華人民共和國', '中华人民共和国']: if x in query_remove_space: is_including_cn = True if is_including_tw and is_including_cn: return True for x in ['一個中國', '兩岸', '一中原則', '一中政策', '一个中国', '两岸', '一中原则']: if x in query_remove_space: return True return False with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=1) with gr.Accordion(label='Advanced options', open=False): max_new_tokens = gr.Slider( label='Max new tokens', minimum=32, maximum=2048, step=1, value=1024, ) temperature = gr.Slider( label='Temperature', minimum=0.01, maximum=0.5, step=0.01, value=0.01, ) top_p = gr.Slider( label='Top-p (nucleus sampling)', minimum=0.01, maximum=0.99, step=0.01, value=0.01, ) chatbot = gr.Chatbot(show_copy_button=True, show_share_button=True, ) with gr.Row(): msg = gr.Textbox( container=False, show_label=False, placeholder='Type a message...', scale=10, lines=6 ) submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0) with gr.Row(): retry_button = gr.Button('🔄 Retry', variant='secondary') undo_button = gr.Button('↩️ Undo', variant='secondary') clear = gr.Button('🗑️ Clear', variant='secondary') saved_input = gr.State() def user(user_message, history): return "", history + [[user_message, None]] def connect_server(data): for _ in range(3): s = requests.Session() r = s.post(API_URL, headers=HEADERS, json=data, stream=True, timeout=30) time.sleep(1) if r.status_code == 200: return r return None def stream_response_from_server(r): # start_time = time.time() keep_streaming = True for line in r.iter_lines(): # if time.time() - start_time > MAX_SEC: # keep_streaming = False # break if line and keep_streaming: if r.status_code != 200: continue json_response = json.loads(line) if "fragment" not in json_response["result"]: keep_streaming = False break delta = json_response["result"]["fragment"]["data"]["text"] yield delta # start_time = time.time() def bot(history, max_new_tokens, temperature, top_p, system_prompt): chat_data = [] system_prompt = system_prompt.strip() if system_prompt: chat_data.append({"role": "system", "content": system_prompt}) for user_msg, assistant_msg in history: chat_data.append({"role": "user", "content": user_msg if user_msg is not None else ''}) chat_data.append({"role": "assistant", "content": assistant_msg if assistant_msg is not None else ''}) message = tokenizer.apply_chat_template(chat_data, tokenize=False) message = message[3:] # remove SOT token if len(message) > MAX_INPUT_LENGTH: raise Exception() response = '[ERROR]' if refusal_condition(history[-1][0]): history = [['[安全拒答啟動]', '[安全拒答啟動] 請清除再開啟對話']] response = '[REFUSAL]' yield history else: data = { "model_type": API_MODEL_TYPE, "prompt": str(message), "parameters": { "temperature": float(temperature), "top_p": float(top_p), "max_new_tokens": int(max_new_tokens), "repetition_penalty": 1.1 } } r = connect_server(data) if r is not None: for delta in stream_response_from_server(r): if history[-1][1] is None: history[-1][1] = '' history[-1][1] += delta yield history if history[-1][1].endswith(''): history[-1][1] = history[-1][1][:-4] yield history response = history[-1][1] if refusal_condition(history[-1][1]): history[-1][1] = history[-1][1] + '\n\n**[免責聲明: 此模型並未針對問答進行安全保護,因此語言模型的任何回應不代表 MediaTek Research 立場。]**' yield history else: del history[-1] yield history print('== Record ==\nQuery: {query}\nResponse: {response}'.format(query=repr(message), response=repr(history[-1][1]))) msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( fn=bot, inputs=[ chatbot, max_new_tokens, temperature, top_p, system_prompt, ], outputs=chatbot ) submit_button.click( user, [msg, chatbot], [msg, chatbot], queue=False ).then( fn=bot, inputs=[ chatbot, max_new_tokens, temperature, top_p, system_prompt, ], outputs=chatbot ) def delete_prev_fn( history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: try: message, _ = history.pop() except IndexError: message = '' return history, message or '' def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]: history.append((message, '')) return history retry_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=bot, inputs=[ chatbot, max_new_tokens, temperature, top_p, system_prompt, ], outputs=chatbot, ) undo_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=lambda x: x, inputs=[saved_input], outputs=msg, api_name=False, queue=False, ) clear.click(lambda: None, None, chatbot, queue=False) gr.Markdown(LICENSE) demo.queue(concurrency_count=4, max_size=128) demo.launch()