Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import whisper
|
4 |
+
from transformers import pipeline
|
5 |
+
from gtts import gTTS
|
6 |
+
import speech_recognition as sr
|
7 |
+
import tempfile
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain.memory import ConversationBufferMemory
|
13 |
+
|
14 |
+
# Initialize models
|
15 |
+
whisper_model = whisper.load_model("base") # Use the base model for faster performance
|
16 |
+
translation_pipeline = pipeline(
|
17 |
+
"translation", model="Helsinki-NLP/opus-mt-ur-en-tiny", tokenizer="Helsinki-NLP/opus-mt-ur-en-tiny"
|
18 |
+
)
|
19 |
+
urdu_translation_pipeline = pipeline(
|
20 |
+
"translation", model="Helsinki-NLP/opus-mt-en-ur-tiny", tokenizer="Helsinki-NLP/opus-mt-en-ur-tiny"
|
21 |
+
)
|
22 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2")
|
23 |
+
|
24 |
+
# Streamlit interface
|
25 |
+
st.title("Real-Time Voice-to-Voice First Aid Chatbot")
|
26 |
+
|
27 |
+
uploaded_file = st.file_uploader("Upload a PDF file for First Aid Knowledge", type=["pdf"])
|
28 |
+
if uploaded_file:
|
29 |
+
st.write("Processing PDF...")
|
30 |
+
loader = PyPDFLoader(uploaded_file)
|
31 |
+
documents = loader.load()
|
32 |
+
|
33 |
+
st.write("Creating vector database...")
|
34 |
+
vectorstore = FAISS.from_documents(documents, embedding_model)
|
35 |
+
st.write("Knowledge base ready.")
|
36 |
+
|
37 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
38 |
+
chain = ConversationalRetrievalChain.from_llm(
|
39 |
+
llm=None, # Replace with a valid LLM integration like OpenAI or Groq client
|
40 |
+
retriever=vectorstore.as_retriever(),
|
41 |
+
memory=memory,
|
42 |
+
)
|
43 |
+
|
44 |
+
if st.button("Start Chat"):
|
45 |
+
st.write("Listening... Speak now!")
|
46 |
+
recognizer = sr.Recognizer()
|
47 |
+
|
48 |
+
with sr.Microphone() as source:
|
49 |
+
st.write("Adjusting for ambient noise, please wait...")
|
50 |
+
recognizer.adjust_for_ambient_noise(source)
|
51 |
+
st.write("You can now speak.")
|
52 |
+
|
53 |
+
while True:
|
54 |
+
try:
|
55 |
+
st.write("Listening...")
|
56 |
+
audio = recognizer.listen(source)
|
57 |
+
st.write("Processing audio...")
|
58 |
+
|
59 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
60 |
+
temp_audio.write(audio.get_wav_data())
|
61 |
+
temp_audio_path = temp_audio.name
|
62 |
+
|
63 |
+
transcription = whisper_model.transcribe(temp_audio_path)["text"]
|
64 |
+
st.write(f"You said: {transcription}")
|
65 |
+
|
66 |
+
translated_text = translation_pipeline(transcription)[0]["translation_text"]
|
67 |
+
st.write(f"Translated Text: {translated_text}")
|
68 |
+
|
69 |
+
response = chain({"input": translated_text})["response"]
|
70 |
+
st.write(f"Response: {response}")
|
71 |
+
|
72 |
+
urdu_response = urdu_translation_pipeline(response)[0]["translation_text"]
|
73 |
+
st.write(f"Response in Urdu: {urdu_response}")
|
74 |
+
|
75 |
+
tts = gTTS(urdu_response, lang="ur")
|
76 |
+
response_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
77 |
+
tts.save(response_audio_path)
|
78 |
+
os.system(f"mpg123 {response_audio_path}")
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
st.write(f"Error: {str(e)}")
|