ashawkey's picture
init
90fd8f8
import math
import numpy as np
from inspect import isfunction
from typing import Optional, Any, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.modeling_utils import ModelMixin
# require xformers!
import xformers
import xformers.ops
from kiui.cam import orbit_camera
def get_camera(
num_frames, elevation=0, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
):
angle_gap = azimuth_span / num_frames
cameras = []
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
pose = orbit_camera(elevation, azimuth, radius=1) # [4, 4]
# opengl to blender
if blender_coord:
pose[2] *= -1
pose[[1, 2]] = pose[[2, 1]]
cameras.append(pose.flatten())
if extra_view:
cameras.append(np.zeros_like(cameras[0]))
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=timesteps.device)
args = timesteps[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
else:
embedding = repeat(timesteps, "b -> b d", d=dim)
# import pdb; pdb.set_trace()
return embedding
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def default(val, d):
if val is not None:
return val
return d() if isfunction(d) else d
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = (
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
if not glu
else GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
ip_dim=0,
ip_weight=1,
):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.ip_dim = ip_dim
self.ip_weight = ip_weight
if self.ip_dim > 0:
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
self.attention_op: Optional[Any] = None
def forward(self, x, context=None):
q = self.to_q(x)
context = default(context, x)
if self.ip_dim > 0:
# context: [B, 77 + 16(ip), 1024]
token_len = context.shape[1]
context_ip = context[:, -self.ip_dim :, :]
k_ip = self.to_k_ip(context_ip)
v_ip = self.to_v_ip(context_ip)
context = context[:, : (token_len - self.ip_dim), :]
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(
q, k, v, attn_bias=None, op=self.attention_op
)
if self.ip_dim > 0:
k_ip, v_ip = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(k_ip, v_ip),
)
# actually compute the attention, what we cannot get enough of
out_ip = xformers.ops.memory_efficient_attention(
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
)
out = out + self.ip_weight * out_ip
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
return self.to_out(out)
class BasicTransformerBlock3D(nn.Module):
def __init__(
self,
dim,
n_heads,
d_head,
context_dim,
dropout=0.0,
gated_ff=True,
ip_dim=0,
ip_weight=1,
):
super().__init__()
self.attn1 = MemoryEfficientCrossAttention(
query_dim=dim,
context_dim=None, # self-attention
heads=n_heads,
dim_head=d_head,
dropout=dropout,
)
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = MemoryEfficientCrossAttention(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
# ip only applies to cross-attention
ip_dim=ip_dim,
ip_weight=ip_weight,
)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
def forward(self, x, context=None, num_frames=1):
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
x = self.attn1(self.norm1(x), context=None) + x
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer3D(nn.Module):
def __init__(
self,
in_channels,
n_heads,
d_head,
context_dim, # cross attention input dim
depth=1,
dropout=0.0,
ip_dim=0,
ip_weight=1,
):
super().__init__()
if not isinstance(context_dim, list):
context_dim = [context_dim]
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock3D(
inner_dim,
n_heads,
d_head,
context_dim=context_dim[d],
dropout=dropout,
ip_dim=ip_dim,
ip_weight=ip_weight,
)
for d in range(depth)
]
)
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
def forward(self, x, context=None, num_frames=1):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context]
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context[i], num_frames=num_frames)
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
return x + x_in
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head ** -0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q, k, v = map(
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
.transpose(1, 2)
.reshape(b, self.heads, t.shape[1], -1)
.contiguous(),
(q, k, v),
)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * ff_mult, bias=False),
nn.GELU(),
nn.Linear(dim * ff_mult, dim, bias=False),
)
]
)
)
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
class CondSequential(nn.Sequential):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context=None, num_frames=1):
for layer in self:
if isinstance(layer, ResBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer3D):
x = layer(x, context, num_frames=num_frames)
else:
x = layer(x)
return x
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(
dims, self.channels, self.out_channels, 3, padding=padding
)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=padding,
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(nn.Module):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
up=False,
down=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_scale_shift_norm = use_scale_shift_norm
self.in_layers = nn.Sequential(
nn.GroupNorm(32, channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
nn.GroupNorm(32, self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class MultiViewUNetModel(ModelMixin, ConfigMixin):
"""
The full multi-view UNet model with attention, timestep embedding and camera embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
:param camera_dim: dimensionality of camera input.
"""
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
transformer_depth=1,
context_dim=None,
n_embed=None,
num_attention_blocks=None,
adm_in_channels=None,
camera_dim=None,
ip_dim=0, # imagedream uses ip_dim > 0
ip_weight=1.0,
**kwargs,
):
super().__init__()
assert context_dim is not None
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert (
num_head_channels != -1
), "Either num_heads or num_head_channels has to be set"
if num_head_channels == -1:
assert (
num_heads != -1
), "Either num_heads or num_head_channels has to be set"
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError(
"provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult"
)
self.num_res_blocks = num_res_blocks
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(
map(
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
range(len(num_attention_blocks)),
)
)
print(
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set."
)
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
self.ip_dim = ip_dim
self.ip_weight = ip_weight
if self.ip_dim > 0:
self.image_embed = Resampler(
dim=context_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=ip_dim, # num token
embedding_dim=1280,
output_dim=context_dim,
ff_mult=4,
)
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
nn.Linear(model_channels, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
if camera_dim is not None:
time_embed_dim = model_channels * 4
self.camera_embed = nn.Sequential(
nn.Linear(camera_dim, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
elif self.num_classes == "continuous":
# print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
nn.Linear(adm_in_channels, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
)
else:
raise ValueError()
self.input_blocks = nn.ModuleList(
[
CondSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers: List[Any] = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if num_attention_blocks is None or nr < num_attention_blocks[level]:
layers.append(
SpatialTransformer3D(
ch,
num_heads,
dim_head,
context_dim=context_dim,
depth=transformer_depth,
ip_dim=self.ip_dim,
ip_weight=self.ip_weight,
)
)
self.input_blocks.append(CondSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
CondSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
self.middle_block = CondSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
),
SpatialTransformer3D(
ch,
num_heads,
dim_head,
context_dim=context_dim,
depth=transformer_depth,
ip_dim=self.ip_dim,
ip_weight=self.ip_weight,
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if num_attention_blocks is None or i < num_attention_blocks[level]:
layers.append(
SpatialTransformer3D(
ch,
num_heads,
dim_head,
context_dim=context_dim,
depth=transformer_depth,
ip_dim=self.ip_dim,
ip_weight=self.ip_weight,
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(CondSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
nn.GroupNorm(32, ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
nn.GroupNorm(32, ch),
conv_nd(dims, model_channels, n_embed, 1),
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def forward(
self,
x,
timesteps=None,
context=None,
y=None,
camera=None,
num_frames=1,
ip=None,
ip_img=None,
**kwargs,
):
"""
Apply the model to an input batch.
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:param num_frames: a integer indicating number of frames for tensor reshaping.
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
"""
assert (
x.shape[0] % num_frames == 0
), "input batch size must be dividable by num_frames!"
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y is not None
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
# Add camera embeddings
if camera is not None:
emb = emb + self.camera_embed(camera)
# imagedream variant
if self.ip_dim > 0:
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
ip_emb = self.image_embed(ip)
context = torch.cat((context, ip_emb), 1)
h = x
for module in self.input_blocks:
h = module(h, emb, context, num_frames=num_frames)
hs.append(h)
h = self.middle_block(h, emb, context, num_frames=num_frames)
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context, num_frames=num_frames)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)