Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,149 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
import torch
from huggingface_hub import snapshot_download
from huggingface_hub.utils import LocalEntryNotFoundError, validate_hf_hub_args
from packaging import version
from ..utils import deprecate, is_transformers_available, logging
from .single_file_utils import (
SingleFileComponentError,
_is_model_weights_in_cached_folder,
_legacy_load_clip_tokenizer,
_legacy_load_safety_checker,
_legacy_load_scheduler,
create_diffusers_clip_model_from_ldm,
create_diffusers_t5_model_from_checkpoint,
fetch_diffusers_config,
fetch_original_config,
is_clip_model_in_single_file,
is_t5_in_single_file,
load_single_file_checkpoint,
)
logger = logging.get_logger(__name__)
# Legacy behaviour. `from_single_file` does not load the safety checker unless explicitly provided
SINGLE_FILE_OPTIONAL_COMPONENTS = ["safety_checker"]
if is_transformers_available():
import transformers
from transformers import PreTrainedModel, PreTrainedTokenizer
def load_single_file_sub_model(
library_name,
class_name,
name,
checkpoint,
pipelines,
is_pipeline_module,
cached_model_config_path,
original_config=None,
local_files_only=False,
torch_dtype=None,
is_legacy_loading=False,
**kwargs,
):
if is_pipeline_module:
pipeline_module = getattr(pipelines, library_name)
class_obj = getattr(pipeline_module, class_name)
else:
# else we just import it from the library.
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
if is_transformers_available():
transformers_version = version.parse(version.parse(transformers.__version__).base_version)
else:
transformers_version = "N/A"
is_transformers_model = (
is_transformers_available()
and issubclass(class_obj, PreTrainedModel)
and transformers_version >= version.parse("4.20.0")
)
is_tokenizer = (
is_transformers_available()
and issubclass(class_obj, PreTrainedTokenizer)
and transformers_version >= version.parse("4.20.0")
)
diffusers_module = importlib.import_module(__name__.split(".")[0])
is_diffusers_single_file_model = issubclass(class_obj, diffusers_module.FromOriginalModelMixin)
is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)
is_diffusers_scheduler = issubclass(class_obj, diffusers_module.SchedulerMixin)
if is_diffusers_single_file_model:
load_method = getattr(class_obj, "from_single_file")
# We cannot provide two different config options to the `from_single_file` method
# Here we have to ignore loading the config from `cached_model_config_path` if `original_config` is provided
if original_config:
cached_model_config_path = None
loaded_sub_model = load_method(
pretrained_model_link_or_path_or_dict=checkpoint,
original_config=original_config,
config=cached_model_config_path,
subfolder=name,
torch_dtype=torch_dtype,
local_files_only=local_files_only,
**kwargs,
)
elif is_transformers_model and is_clip_model_in_single_file(class_obj, checkpoint):
loaded_sub_model = create_diffusers_clip_model_from_ldm(
class_obj,
checkpoint=checkpoint,
config=cached_model_config_path,
subfolder=name,
torch_dtype=torch_dtype,
local_files_only=local_files_only,
is_legacy_loading=is_legacy_loading,
)
elif is_transformers_model and is_t5_in_single_file(checkpoint):
loaded_sub_model = create_diffusers_t5_model_from_checkpoint(
class_obj,
checkpoint=checkpoint,
config=cached_model_config_path,
subfolder=name,
torch_dtype=torch_dtype,
local_files_only=local_files_only,
)
elif is_tokenizer and is_legacy_loading:
loaded_sub_model = _legacy_load_clip_tokenizer(
class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only
)
elif is_diffusers_scheduler and is_legacy_loading:
loaded_sub_model = _legacy_load_scheduler(
class_obj, checkpoint=checkpoint, component_name=name, original_config=original_config, **kwargs
)
else:
if not hasattr(class_obj, "from_pretrained"):
raise ValueError(
(
f"The component {class_obj.__name__} cannot be loaded as it does not seem to have"
" a supported loading method."
)
)
loading_kwargs = {}
loading_kwargs.update(
{
"pretrained_model_name_or_path": cached_model_config_path,
"subfolder": name,
"local_files_only": local_files_only,
}
)
# Schedulers and Tokenizers don't make use of torch_dtype
# Skip passing it to those objects
if issubclass(class_obj, torch.nn.Module):
loading_kwargs.update({"torch_dtype": torch_dtype})
if is_diffusers_model or is_transformers_model:
if not _is_model_weights_in_cached_folder(cached_model_config_path, name):
raise SingleFileComponentError(
f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint."
)
load_method = getattr(class_obj, "from_pretrained")
loaded_sub_model = load_method(**loading_kwargs)
return loaded_sub_model
def _map_component_types_to_config_dict(component_types):
diffusers_module = importlib.import_module(__name__.split(".")[0])
config_dict = {}
component_types.pop("self", None)
if is_transformers_available():
transformers_version = version.parse(version.parse(transformers.__version__).base_version)
else:
transformers_version = "N/A"
for component_name, component_value in component_types.items():
is_diffusers_model = issubclass(component_value[0], diffusers_module.ModelMixin)
is_scheduler_enum = component_value[0].__name__ == "KarrasDiffusionSchedulers"
is_scheduler = issubclass(component_value[0], diffusers_module.SchedulerMixin)
is_transformers_model = (
is_transformers_available()
and issubclass(component_value[0], PreTrainedModel)
and transformers_version >= version.parse("4.20.0")
)
is_transformers_tokenizer = (
is_transformers_available()
and issubclass(component_value[0], PreTrainedTokenizer)
and transformers_version >= version.parse("4.20.0")
)
if is_diffusers_model and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS:
config_dict[component_name] = ["diffusers", component_value[0].__name__]
elif is_scheduler_enum or is_scheduler:
if is_scheduler_enum:
# Since we cannot fetch a scheduler config from the hub, we default to DDIMScheduler
# if the type hint is a KarrassDiffusionSchedulers enum
config_dict[component_name] = ["diffusers", "DDIMScheduler"]
elif is_scheduler:
config_dict[component_name] = ["diffusers", component_value[0].__name__]
elif (
is_transformers_model or is_transformers_tokenizer
) and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS:
config_dict[component_name] = ["transformers", component_value[0].__name__]
else:
config_dict[component_name] = [None, None]
return config_dict
def _infer_pipeline_config_dict(pipeline_class):
parameters = inspect.signature(pipeline_class.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
component_types = pipeline_class._get_signature_types()
# Ignore parameters that are not required for the pipeline
component_types = {k: v for k, v in component_types.items() if k in required_parameters}
config_dict = _map_component_types_to_config_dict(component_types)
return config_dict
def _download_diffusers_model_config_from_hub(
pretrained_model_name_or_path,
cache_dir,
revision,
proxies,
force_download=None,
local_files_only=None,
token=None,
):
allow_patterns = ["**/*.json", "*.json", "*.txt", "**/*.txt", "**/*.model"]
cached_model_path = snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
revision=revision,
proxies=proxies,
force_download=force_download,
local_files_only=local_files_only,
token=token,
allow_patterns=allow_patterns,
)
return cached_model_path
class FromSingleFileMixin:
"""
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
original_config_file (`str`, *optional*):
The path to the original config file that was used to train the model. If not provided, the config file
will be inferred from the checkpoint file.
config (`str`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline
component configs in Diffusers format.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
Examples:
```py
>>> from diffusers import StableDiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
... )
>>> # Download pipeline from local file
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly.ckpt")
>>> # Enable float16 and move to GPU
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
... torch_dtype=torch.float16,
... )
>>> pipeline.to("cuda")
```
"""
original_config_file = kwargs.pop("original_config_file", None)
config = kwargs.pop("config", None)
original_config = kwargs.pop("original_config", None)
if original_config_file is not None:
deprecation_message = (
"`original_config_file` argument is deprecated and will be removed in future versions."
"please use the `original_config` argument instead."
)
deprecate("original_config_file", "1.0.0", deprecation_message)
original_config = original_config_file
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
cache_dir = kwargs.pop("cache_dir", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
is_legacy_loading = False
# We shouldn't allow configuring individual models components through a Pipeline creation method
# These model kwargs should be deprecated
scaling_factor = kwargs.get("scaling_factor", None)
if scaling_factor is not None:
deprecation_message = (
"Passing the `scaling_factor` argument to `from_single_file is deprecated "
"and will be ignored in future versions."
)
deprecate("scaling_factor", "1.0.0", deprecation_message)
if original_config is not None:
original_config = fetch_original_config(original_config, local_files_only=local_files_only)
from ..pipelines.pipeline_utils import _get_pipeline_class
pipeline_class = _get_pipeline_class(cls, config=None)
checkpoint = load_single_file_checkpoint(
pretrained_model_link_or_path,
force_download=force_download,
proxies=proxies,
token=token,
cache_dir=cache_dir,
local_files_only=local_files_only,
revision=revision,
)
if config is None:
config = fetch_diffusers_config(checkpoint)
default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
else:
default_pretrained_model_config_name = config
if not os.path.isdir(default_pretrained_model_config_name):
# Provided config is a repo_id
if default_pretrained_model_config_name.count("/") > 1:
raise ValueError(
f'The provided config "{config}"'
" is neither a valid local path nor a valid repo id. Please check the parameter."
)
try:
# Attempt to download the config files for the pipeline
cached_model_config_path = _download_diffusers_model_config_from_hub(
default_pretrained_model_config_name,
cache_dir=cache_dir,
revision=revision,
proxies=proxies,
force_download=force_download,
local_files_only=local_files_only,
token=token,
)
config_dict = pipeline_class.load_config(cached_model_config_path)
except LocalEntryNotFoundError:
# `local_files_only=True` but a local diffusers format model config is not available in the cache
# If `original_config` is not provided, we need override `local_files_only` to False
# to fetch the config files from the hub so that we have a way
# to configure the pipeline components.
if original_config is None:
logger.warning(
"`local_files_only` is True but no local configs were found for this checkpoint.\n"
"Attempting to download the necessary config files for this pipeline.\n"
)
cached_model_config_path = _download_diffusers_model_config_from_hub(
default_pretrained_model_config_name,
cache_dir=cache_dir,
revision=revision,
proxies=proxies,
force_download=force_download,
local_files_only=False,
token=token,
)
config_dict = pipeline_class.load_config(cached_model_config_path)
else:
# For backwards compatibility
# If `original_config` is provided, then we need to assume we are using legacy loading for pipeline components
logger.warning(
"Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\n"
"This may lead to errors if the model components are not correctly inferred. \n"
"To avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \n"
"e.g. `from_single_file(<my model checkpoint path>, config=<path to local diffusers model repo>) \n"
"or run `from_single_file` with `local_files_only=False` first to update the local cache directory with "
"the necessary config files.\n"
)
is_legacy_loading = True
cached_model_config_path = None
config_dict = _infer_pipeline_config_dict(pipeline_class)
config_dict["_class_name"] = pipeline_class.__name__
else:
# Provided config is a path to a local directory attempt to load directly.
cached_model_config_path = default_pretrained_model_config_name
config_dict = pipeline_class.load_config(cached_model_config_path)
# pop out "_ignore_files" as it is only needed for download
config_dict.pop("_ignore_files", None)
expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
from diffusers import pipelines
# remove `null` components
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
if name in SINGLE_FILE_OPTIONAL_COMPONENTS:
return False
return True
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
for name, (library_name, class_name) in logging.tqdm(
sorted(init_dict.items()), desc="Loading pipeline components..."
):
loaded_sub_model = None
is_pipeline_module = hasattr(pipelines, library_name)
if name in passed_class_obj:
loaded_sub_model = passed_class_obj[name]
else:
try:
loaded_sub_model = load_single_file_sub_model(
library_name=library_name,
class_name=class_name,
name=name,
checkpoint=checkpoint,
is_pipeline_module=is_pipeline_module,
cached_model_config_path=cached_model_config_path,
pipelines=pipelines,
torch_dtype=torch_dtype,
original_config=original_config,
local_files_only=local_files_only,
is_legacy_loading=is_legacy_loading,
**kwargs,
)
except SingleFileComponentError as e:
raise SingleFileComponentError(
(
f"{e.message}\n"
f"Please load the component before passing it in as an argument to `from_single_file`.\n"
f"\n"
f"{name} = {class_name}.from_pretrained('...')\n"
f"pipe = {pipeline_class.__name__}.from_single_file(<checkpoint path>, {name}={name})\n"
f"\n"
)
)
init_kwargs[name] = loaded_sub_model
missing_modules = set(expected_modules) - set(init_kwargs.keys())
passed_modules = list(passed_class_obj.keys())
optional_modules = pipeline_class._optional_components
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
elif len(missing_modules) > 0:
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
raise ValueError(
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
)
# deprecated kwargs
load_safety_checker = kwargs.pop("load_safety_checker", None)
if load_safety_checker is not None:
deprecation_message = (
"Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`"
"using the `safety_checker` and `feature_extractor` arguments in `from_single_file`"
)
deprecate("load_safety_checker", "1.0.0", deprecation_message)
safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype)
init_kwargs.update(safety_checker_components)
pipe = pipeline_class(**init_kwargs)
return pipe
|