File size: 11,158 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional

import torch
import torch.nn.functional as F
from torch import nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import is_torch_version, logging
from ..attention import BasicTransformerBlock
from ..embeddings import PatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class DiTTransformer2DModel(ModelMixin, ConfigMixin):
    r"""
    A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748).

    Parameters:
        num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
        in_channels (int, defaults to 4): The number of channels in the input.
        out_channels (int, optional):
            The number of channels in the output. Specify this parameter if the output channel number differs from the
            input.
        num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
        dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
        norm_num_groups (int, optional, defaults to 32):
            Number of groups for group normalization within Transformer blocks.
        attention_bias (bool, optional, defaults to True):
            Configure if the Transformer blocks' attention should contain a bias parameter.
        sample_size (int, defaults to 32):
            The width of the latent images. This parameter is fixed during training.
        patch_size (int, defaults to 2):
            Size of the patches the model processes, relevant for architectures working on non-sequential data.
        activation_fn (str, optional, defaults to "gelu-approximate"):
            Activation function to use in feed-forward networks within Transformer blocks.
        num_embeds_ada_norm (int, optional, defaults to 1000):
            Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
            inference.
        upcast_attention (bool, optional, defaults to False):
            If true, upcasts the attention mechanism dimensions for potentially improved performance.
        norm_type (str, optional, defaults to "ada_norm_zero"):
            Specifies the type of normalization used, can be 'ada_norm_zero'.
        norm_elementwise_affine (bool, optional, defaults to False):
            If true, enables element-wise affine parameters in the normalization layers.
        norm_eps (float, optional, defaults to 1e-5):
            A small constant added to the denominator in normalization layers to prevent division by zero.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 72,
        in_channels: int = 4,
        out_channels: Optional[int] = None,
        num_layers: int = 28,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        attention_bias: bool = True,
        sample_size: int = 32,
        patch_size: int = 2,
        activation_fn: str = "gelu-approximate",
        num_embeds_ada_norm: Optional[int] = 1000,
        upcast_attention: bool = False,
        norm_type: str = "ada_norm_zero",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-5,
    ):
        super().__init__()

        # Validate inputs.
        if norm_type != "ada_norm_zero":
            raise NotImplementedError(
                f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
            )
        elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None:
            raise ValueError(
                f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
            )

        # Set some common variables used across the board.
        self.attention_head_dim = attention_head_dim
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
        self.out_channels = in_channels if out_channels is None else out_channels
        self.gradient_checkpointing = False

        # 2. Initialize the position embedding and transformer blocks.
        self.height = self.config.sample_size
        self.width = self.config.sample_size

        self.patch_size = self.config.patch_size
        self.pos_embed = PatchEmbed(
            height=self.config.sample_size,
            width=self.config.sample_size,
            patch_size=self.config.patch_size,
            in_channels=self.config.in_channels,
            embed_dim=self.inner_dim,
        )

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    self.inner_dim,
                    self.config.num_attention_heads,
                    self.config.attention_head_dim,
                    dropout=self.config.dropout,
                    activation_fn=self.config.activation_fn,
                    num_embeds_ada_norm=self.config.num_embeds_ada_norm,
                    attention_bias=self.config.attention_bias,
                    upcast_attention=self.config.upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=self.config.norm_elementwise_affine,
                    norm_eps=self.config.norm_eps,
                )
                for _ in range(self.config.num_layers)
            ]
        )

        # 3. Output blocks.
        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
        self.proj_out_2 = nn.Linear(
            self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
        )

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        return_dict: bool = True,
    ):
        """
        The [`DiTTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        # 1. Input
        height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
        hidden_states = self.pos_embed(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    None,
                    None,
                    timestep,
                    cross_attention_kwargs,
                    class_labels,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=None,
                    encoder_hidden_states=None,
                    encoder_attention_mask=None,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                )

        # 3. Output
        conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype)
        shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
        hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
        hidden_states = self.proj_out_2(hidden_states)

        # unpatchify
        height = width = int(hidden_states.shape[1] ** 0.5)
        hidden_states = hidden_states.reshape(
            shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
        )
        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
        )

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)