File size: 14,393 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ..attention import LuminaFeedForward
from ..attention_processor import Attention, LuminaAttnProcessor2_0
from ..embeddings import (
    LuminaCombinedTimestepCaptionEmbedding,
    LuminaPatchEmbed,
)
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class LuminaNextDiTBlock(nn.Module):
    """
    A LuminaNextDiTBlock for LuminaNextDiT2DModel.

    Parameters:
        dim (`int`): Embedding dimension of the input features.
        num_attention_heads (`int`): Number of attention heads.
        num_kv_heads (`int`):
            Number of attention heads in key and value features (if using GQA), or set to None for the same as query.
        multiple_of (`int`): The number of multiple of ffn layer.
        ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension.
        norm_eps (`float`): The eps for norm layer.
        qk_norm (`bool`): normalization for query and key.
        cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states.
        norm_elementwise_affine (`bool`, *optional*, defaults to True),
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        num_kv_heads: int,
        multiple_of: int,
        ffn_dim_multiplier: float,
        norm_eps: float,
        qk_norm: bool,
        cross_attention_dim: int,
        norm_elementwise_affine: bool = True,
    ) -> None:
        super().__init__()
        self.head_dim = dim // num_attention_heads

        self.gate = nn.Parameter(torch.zeros([num_attention_heads]))

        # Self-attention
        self.attn1 = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=dim // num_attention_heads,
            qk_norm="layer_norm_across_heads" if qk_norm else None,
            heads=num_attention_heads,
            kv_heads=num_kv_heads,
            eps=1e-5,
            bias=False,
            out_bias=False,
            processor=LuminaAttnProcessor2_0(),
        )
        self.attn1.to_out = nn.Identity()

        # Cross-attention
        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            dim_head=dim // num_attention_heads,
            qk_norm="layer_norm_across_heads" if qk_norm else None,
            heads=num_attention_heads,
            kv_heads=num_kv_heads,
            eps=1e-5,
            bias=False,
            out_bias=False,
            processor=LuminaAttnProcessor2_0(),
        )

        self.feed_forward = LuminaFeedForward(
            dim=dim,
            inner_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
        )

        self.norm1 = LuminaRMSNormZero(
            embedding_dim=dim,
            norm_eps=norm_eps,
            norm_elementwise_affine=norm_elementwise_affine,
        )
        self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)

        self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
        self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)

        self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        image_rotary_emb: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        encoder_mask: torch.Tensor,
        temb: torch.Tensor,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ):
        """
        Perform a forward pass through the LuminaNextDiTBlock.

        Parameters:
            hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock.
            attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask.
            image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies.
            encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder.
            encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask.
            temb (`torch.Tensor`): Timestep embedding with text prompt embedding.
            cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention.
        """
        residual = hidden_states

        # Self-attention
        norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
        self_attn_output = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_hidden_states,
            attention_mask=attention_mask,
            query_rotary_emb=image_rotary_emb,
            key_rotary_emb=image_rotary_emb,
            **cross_attention_kwargs,
        )

        # Cross-attention
        norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
        cross_attn_output = self.attn2(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            attention_mask=encoder_mask,
            query_rotary_emb=image_rotary_emb,
            key_rotary_emb=None,
            **cross_attention_kwargs,
        )
        cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1)
        mixed_attn_output = self_attn_output + cross_attn_output
        mixed_attn_output = mixed_attn_output.flatten(-2)
        # linear proj
        hidden_states = self.attn2.to_out[0](mixed_attn_output)

        hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states)

        mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))

        hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)

        return hidden_states


class LuminaNextDiT2DModel(ModelMixin, ConfigMixin):
    """
    LuminaNextDiT: Diffusion model with a Transformer backbone.

    Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.

    Parameters:
        sample_size (`int`): The width of the latent images. This is fixed during training since
            it is used to learn a number of position embeddings.
        patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
            The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
        in_channels (`int`, *optional*, defaults to 4):
            The number of input channels for the model. Typically, this matches the number of channels in the input
            images.
        hidden_size (`int`, *optional*, defaults to 4096):
            The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
            hidden representations.
        num_layers (`int`, *optional*, default to 32):
            The number of layers in the model. This defines the depth of the neural network.
        num_attention_heads (`int`, *optional*, defaults to 32):
            The number of attention heads in each attention layer. This parameter specifies how many separate attention
            mechanisms are used.
        num_kv_heads (`int`, *optional*, defaults to 8):
            The number of key-value heads in the attention mechanism, if different from the number of attention heads.
            If None, it defaults to num_attention_heads.
        multiple_of (`int`, *optional*, defaults to 256):
            A factor that the hidden size should be a multiple of. This can help optimize certain hardware
            configurations.
        ffn_dim_multiplier (`float`, *optional*):
            A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
            the model configuration.
        norm_eps (`float`, *optional*, defaults to 1e-5):
            A small value added to the denominator for numerical stability in normalization layers.
        learn_sigma (`bool`, *optional*, defaults to True):
            Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in
            predictions.
        qk_norm (`bool`, *optional*, defaults to True):
            Indicates if the queries and keys in the attention mechanism should be normalized.
        cross_attention_dim (`int`, *optional*, defaults to 2048):
            The dimensionality of the text embeddings. This parameter defines the size of the text representations used
            in the model.
        scaling_factor (`float`, *optional*, defaults to 1.0):
            A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
            overall scale of the model's operations.
    """

    @register_to_config
    def __init__(
        self,
        sample_size: int = 128,
        patch_size: Optional[int] = 2,
        in_channels: Optional[int] = 4,
        hidden_size: Optional[int] = 2304,
        num_layers: Optional[int] = 32,
        num_attention_heads: Optional[int] = 32,
        num_kv_heads: Optional[int] = None,
        multiple_of: Optional[int] = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps: Optional[float] = 1e-5,
        learn_sigma: Optional[bool] = True,
        qk_norm: Optional[bool] = True,
        cross_attention_dim: Optional[int] = 2048,
        scaling_factor: Optional[float] = 1.0,
    ) -> None:
        super().__init__()
        self.sample_size = sample_size
        self.patch_size = patch_size
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.head_dim = hidden_size // num_attention_heads
        self.scaling_factor = scaling_factor

        self.patch_embedder = LuminaPatchEmbed(
            patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True
        )

        self.pad_token = nn.Parameter(torch.empty(hidden_size))

        self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(
            hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim
        )

        self.layers = nn.ModuleList(
            [
                LuminaNextDiTBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    qk_norm,
                    cross_attention_dim,
                )
                for _ in range(num_layers)
            ]
        )
        self.norm_out = LuminaLayerNormContinuous(
            embedding_dim=hidden_size,
            conditioning_embedding_dim=min(hidden_size, 1024),
            elementwise_affine=False,
            eps=1e-6,
            bias=True,
            out_dim=patch_size * patch_size * self.out_channels,
        )
        # self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels)

        assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"

    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        encoder_mask: torch.Tensor,
        image_rotary_emb: torch.Tensor,
        cross_attention_kwargs: Dict[str, Any] = None,
        return_dict=True,
    ) -> torch.Tensor:
        """
        Forward pass of LuminaNextDiT.

        Parameters:
            hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W).
            timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,).
            encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D).
            encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L).
        """
        hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb)
        image_rotary_emb = image_rotary_emb.to(hidden_states.device)

        temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask)

        encoder_mask = encoder_mask.bool()
        for layer in self.layers:
            hidden_states = layer(
                hidden_states,
                mask,
                image_rotary_emb,
                encoder_hidden_states,
                encoder_mask,
                temb=temb,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        hidden_states = self.norm_out(hidden_states, temb)

        # unpatchify
        height_tokens = width_tokens = self.patch_size
        height, width = img_size[0]
        batch_size = hidden_states.size(0)
        sequence_length = (height // height_tokens) * (width // width_tokens)
        hidden_states = hidden_states[:, :sequence_length].view(
            batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels
        )
        output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)