Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,393 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ..attention import LuminaFeedForward
from ..attention_processor import Attention, LuminaAttnProcessor2_0
from ..embeddings import (
LuminaCombinedTimestepCaptionEmbedding,
LuminaPatchEmbed,
)
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LuminaNextDiTBlock(nn.Module):
"""
A LuminaNextDiTBlock for LuminaNextDiT2DModel.
Parameters:
dim (`int`): Embedding dimension of the input features.
num_attention_heads (`int`): Number of attention heads.
num_kv_heads (`int`):
Number of attention heads in key and value features (if using GQA), or set to None for the same as query.
multiple_of (`int`): The number of multiple of ffn layer.
ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension.
norm_eps (`float`): The eps for norm layer.
qk_norm (`bool`): normalization for query and key.
cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states.
norm_elementwise_affine (`bool`, *optional*, defaults to True),
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
num_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
qk_norm: bool,
cross_attention_dim: int,
norm_elementwise_affine: bool = True,
) -> None:
super().__init__()
self.head_dim = dim // num_attention_heads
self.gate = nn.Parameter(torch.zeros([num_attention_heads]))
# Self-attention
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
qk_norm="layer_norm_across_heads" if qk_norm else None,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=LuminaAttnProcessor2_0(),
)
self.attn1.to_out = nn.Identity()
# Cross-attention
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
qk_norm="layer_norm_across_heads" if qk_norm else None,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=LuminaAttnProcessor2_0(),
)
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
self.norm1 = LuminaRMSNormZero(
embedding_dim=dim,
norm_eps=norm_eps,
norm_elementwise_affine=norm_elementwise_affine,
)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_mask: torch.Tensor,
temb: torch.Tensor,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
"""
Perform a forward pass through the LuminaNextDiTBlock.
Parameters:
hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock.
attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask.
image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies.
encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder.
encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask.
temb (`torch.Tensor`): Timestep embedding with text prompt embedding.
cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention.
"""
residual = hidden_states
# Self-attention
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
self_attn_output = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_hidden_states,
attention_mask=attention_mask,
query_rotary_emb=image_rotary_emb,
key_rotary_emb=image_rotary_emb,
**cross_attention_kwargs,
)
# Cross-attention
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
cross_attn_output = self.attn2(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=encoder_mask,
query_rotary_emb=image_rotary_emb,
key_rotary_emb=None,
**cross_attention_kwargs,
)
cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1)
mixed_attn_output = self_attn_output + cross_attn_output
mixed_attn_output = mixed_attn_output.flatten(-2)
# linear proj
hidden_states = self.attn2.to_out[0](mixed_attn_output)
hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
return hidden_states
class LuminaNextDiT2DModel(ModelMixin, ConfigMixin):
"""
LuminaNextDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Parameters:
sample_size (`int`): The width of the latent images. This is fixed during training since
it is used to learn a number of position embeddings.
patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
in_channels (`int`, *optional*, defaults to 4):
The number of input channels for the model. Typically, this matches the number of channels in the input
images.
hidden_size (`int`, *optional*, defaults to 4096):
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
hidden representations.
num_layers (`int`, *optional*, default to 32):
The number of layers in the model. This defines the depth of the neural network.
num_attention_heads (`int`, *optional*, defaults to 32):
The number of attention heads in each attention layer. This parameter specifies how many separate attention
mechanisms are used.
num_kv_heads (`int`, *optional*, defaults to 8):
The number of key-value heads in the attention mechanism, if different from the number of attention heads.
If None, it defaults to num_attention_heads.
multiple_of (`int`, *optional*, defaults to 256):
A factor that the hidden size should be a multiple of. This can help optimize certain hardware
configurations.
ffn_dim_multiplier (`float`, *optional*):
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
the model configuration.
norm_eps (`float`, *optional*, defaults to 1e-5):
A small value added to the denominator for numerical stability in normalization layers.
learn_sigma (`bool`, *optional*, defaults to True):
Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in
predictions.
qk_norm (`bool`, *optional*, defaults to True):
Indicates if the queries and keys in the attention mechanism should be normalized.
cross_attention_dim (`int`, *optional*, defaults to 2048):
The dimensionality of the text embeddings. This parameter defines the size of the text representations used
in the model.
scaling_factor (`float`, *optional*, defaults to 1.0):
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
overall scale of the model's operations.
"""
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: Optional[int] = 2,
in_channels: Optional[int] = 4,
hidden_size: Optional[int] = 2304,
num_layers: Optional[int] = 32,
num_attention_heads: Optional[int] = 32,
num_kv_heads: Optional[int] = None,
multiple_of: Optional[int] = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: Optional[float] = 1e-5,
learn_sigma: Optional[bool] = True,
qk_norm: Optional[bool] = True,
cross_attention_dim: Optional[int] = 2048,
scaling_factor: Optional[float] = 1.0,
) -> None:
super().__init__()
self.sample_size = sample_size
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.head_dim = hidden_size // num_attention_heads
self.scaling_factor = scaling_factor
self.patch_embedder = LuminaPatchEmbed(
patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True
)
self.pad_token = nn.Parameter(torch.empty(hidden_size))
self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(
hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim
)
self.layers = nn.ModuleList(
[
LuminaNextDiTBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
cross_attention_dim,
)
for _ in range(num_layers)
]
)
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
bias=True,
out_dim=patch_size * patch_size * self.out_channels,
)
# self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels)
assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
cross_attention_kwargs: Dict[str, Any] = None,
return_dict=True,
) -> torch.Tensor:
"""
Forward pass of LuminaNextDiT.
Parameters:
hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W).
timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,).
encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D).
encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L).
"""
hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb)
image_rotary_emb = image_rotary_emb.to(hidden_states.device)
temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask)
encoder_mask = encoder_mask.bool()
for layer in self.layers:
hidden_states = layer(
hidden_states,
mask,
image_rotary_emb,
encoder_hidden_states,
encoder_mask,
temb=temb,
cross_attention_kwargs=cross_attention_kwargs,
)
hidden_states = self.norm_out(hidden_states, temb)
# unpatchify
height_tokens = width_tokens = self.patch_size
height, width = img_size[0]
batch_size = hidden_states.size(0)
sequence_length = (height // height_tokens) * (width // width_tokens)
hidden_states = hidden_states[:, :sequence_length].view(
batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels
)
output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
|