File size: 19,315 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Any, Dict, Optional, Union

import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint

from ...configuration_utils import ConfigMixin, register_to_config
from ...models.attention import FeedForward
from ...models.attention_processor import (
    Attention,
    AttentionProcessor,
    StableAudioAttnProcessor2_0,
)
from ...models.modeling_utils import ModelMixin
from ...models.transformers.transformer_2d import Transformer2DModelOutput
from ...utils import is_torch_version, logging
from ...utils.torch_utils import maybe_allow_in_graph


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class StableAudioGaussianFourierProjection(nn.Module):
    """Gaussian Fourier embeddings for noise levels."""

    # Copied from diffusers.models.embeddings.GaussianFourierProjection.__init__
    def __init__(
        self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
    ):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
        self.log = log
        self.flip_sin_to_cos = flip_sin_to_cos

        if set_W_to_weight:
            # to delete later
            del self.weight
            self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
            self.weight = self.W
            del self.W

    def forward(self, x):
        if self.log:
            x = torch.log(x)

        x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :]

        if self.flip_sin_to_cos:
            out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
        else:
            out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
        return out


@maybe_allow_in_graph
class StableAudioDiTBlock(nn.Module):
    r"""
    Transformer block used in Stable Audio model (https://github.com/Stability-AI/stable-audio-tools). Allow skip
    connection and QKNorm

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for the query states.
        num_key_value_attention_heads (`int`): The number of heads to use for the key and value states.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        num_key_value_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        upcast_attention: bool = False,
        norm_eps: float = 1e-5,
        ff_inner_dim: Optional[int] = None,
    ):
        super().__init__()
        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=False,
            upcast_attention=upcast_attention,
            out_bias=False,
            processor=StableAudioAttnProcessor2_0(),
        )

        # 2. Cross-Attn
        self.norm2 = nn.LayerNorm(dim, norm_eps, True)

        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            kv_heads=num_key_value_attention_heads,
            dropout=dropout,
            bias=False,
            upcast_attention=upcast_attention,
            out_bias=False,
            processor=StableAudioAttnProcessor2_0(),
        )  # is self-attn if encoder_hidden_states is none

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(dim, norm_eps, True)
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn="swiglu",
            final_dropout=False,
            inner_dim=ff_inner_dim,
            bias=True,
        )

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        rotary_embedding: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            attention_mask=attention_mask,
            rotary_emb=rotary_embedding,
        )

        hidden_states = attn_output + hidden_states

        # 2. Cross-Attention
        norm_hidden_states = self.norm2(hidden_states)

        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=encoder_attention_mask,
        )
        hidden_states = attn_output + hidden_states

        # 3. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)
        ff_output = self.ff(norm_hidden_states)

        hidden_states = ff_output + hidden_states

        return hidden_states


class StableAudioDiTModel(ModelMixin, ConfigMixin):
    """
    The Diffusion Transformer model introduced in Stable Audio.

    Reference: https://github.com/Stability-AI/stable-audio-tools

    Parameters:
        sample_size ( `int`, *optional*, defaults to 1024): The size of the input sample.
        in_channels (`int`, *optional*, defaults to 64): The number of channels in the input.
        num_layers (`int`, *optional*, defaults to 24): The number of layers of Transformer blocks to use.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_attention_heads (`int`, *optional*, defaults to 24): The number of heads to use for the query states.
        num_key_value_attention_heads (`int`, *optional*, defaults to 12):
            The number of heads to use for the key and value states.
        out_channels (`int`, defaults to 64): Number of output channels.
        cross_attention_dim ( `int`, *optional*, defaults to 768): Dimension of the cross-attention projection.
        time_proj_dim ( `int`, *optional*, defaults to 256): Dimension of the timestep inner projection.
        global_states_input_dim ( `int`, *optional*, defaults to 1536):
            Input dimension of the global hidden states projection.
        cross_attention_input_dim ( `int`, *optional*, defaults to 768):
            Input dimension of the cross-attention projection
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: int = 1024,
        in_channels: int = 64,
        num_layers: int = 24,
        attention_head_dim: int = 64,
        num_attention_heads: int = 24,
        num_key_value_attention_heads: int = 12,
        out_channels: int = 64,
        cross_attention_dim: int = 768,
        time_proj_dim: int = 256,
        global_states_input_dim: int = 1536,
        cross_attention_input_dim: int = 768,
    ):
        super().__init__()
        self.sample_size = sample_size
        self.out_channels = out_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.time_proj = StableAudioGaussianFourierProjection(
            embedding_size=time_proj_dim // 2,
            flip_sin_to_cos=True,
            log=False,
            set_W_to_weight=False,
        )

        self.timestep_proj = nn.Sequential(
            nn.Linear(time_proj_dim, self.inner_dim, bias=True),
            nn.SiLU(),
            nn.Linear(self.inner_dim, self.inner_dim, bias=True),
        )

        self.global_proj = nn.Sequential(
            nn.Linear(global_states_input_dim, self.inner_dim, bias=False),
            nn.SiLU(),
            nn.Linear(self.inner_dim, self.inner_dim, bias=False),
        )

        self.cross_attention_proj = nn.Sequential(
            nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False),
            nn.SiLU(),
            nn.Linear(cross_attention_dim, cross_attention_dim, bias=False),
        )

        self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False)
        self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False)

        self.transformer_blocks = nn.ModuleList(
            [
                StableAudioDiTBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    num_key_value_attention_heads=num_key_value_attention_heads,
                    attention_head_dim=attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                )
                for i in range(num_layers)
            ]
        )

        self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False)
        self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False)

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.transformers.hunyuan_transformer_2d.HunyuanDiT2DModel.set_default_attn_processor with Hunyuan->StableAudio
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(StableAudioAttnProcessor2_0())

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        timestep: torch.LongTensor = None,
        encoder_hidden_states: torch.FloatTensor = None,
        global_hidden_states: torch.FloatTensor = None,
        rotary_embedding: torch.FloatTensor = None,
        return_dict: bool = True,
        attention_mask: Optional[torch.LongTensor] = None,
        encoder_attention_mask: Optional[torch.LongTensor] = None,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        The [`StableAudioDiTModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, in_channels, sequence_len)`):
                Input `hidden_states`.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, encoder_sequence_len, cross_attention_input_dim)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            global_hidden_states (`torch.FloatTensor` of shape `(batch size, global_sequence_len, global_states_input_dim)`):
               Global embeddings that will be prepended to the hidden states.
            rotary_embedding (`torch.Tensor`):
                The rotary embeddings to apply on query and key tensors during attention calculation.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
                Mask to avoid performing attention on padding token indices, formed by concatenating the attention
                masks
                    for the two text encoders together. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
            encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
                Mask to avoid performing attention on padding token cross-attention indices, formed by concatenating
                the attention masks
                    for the two text encoders together. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states)
        global_hidden_states = self.global_proj(global_hidden_states)
        time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype)))

        global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1)

        hidden_states = self.preprocess_conv(hidden_states) + hidden_states
        # (batch_size, dim, sequence_length) -> (batch_size, sequence_length, dim)
        hidden_states = hidden_states.transpose(1, 2)

        hidden_states = self.proj_in(hidden_states)

        # prepend global states to hidden states
        hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2)
        if attention_mask is not None:
            prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool)
            attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1)

        for block in self.transformer_blocks:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    attention_mask,
                    cross_attention_hidden_states,
                    encoder_attention_mask,
                    rotary_embedding,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=cross_attention_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    rotary_embedding=rotary_embedding,
                )

        hidden_states = self.proj_out(hidden_states)

        # (batch_size, sequence_length, dim) -> (batch_size, dim, sequence_length)
        # remove prepend length that has been added by global hidden states
        hidden_states = hidden_states.transpose(1, 2)[:, :, 1:]
        hidden_states = self.postprocess_conv(hidden_states) + hidden_states

        if not return_dict:
            return (hidden_states,)

        return Transformer2DModelOutput(sample=hidden_states)