Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import inspect | |
import os | |
from pathlib import Path | |
from typing import Callable, Dict, List, Optional, Union | |
import safetensors | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import model_info | |
from huggingface_hub.constants import HF_HUB_OFFLINE | |
from ..models.modeling_utils import ModelMixin, load_state_dict | |
from ..utils import ( | |
USE_PEFT_BACKEND, | |
_get_model_file, | |
delete_adapter_layers, | |
deprecate, | |
is_accelerate_available, | |
is_peft_available, | |
is_transformers_available, | |
logging, | |
recurse_remove_peft_layers, | |
set_adapter_layers, | |
set_weights_and_activate_adapters, | |
) | |
if is_transformers_available(): | |
from transformers import PreTrainedModel | |
if is_peft_available(): | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
if is_accelerate_available(): | |
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module | |
logger = logging.get_logger(__name__) | |
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None): | |
""" | |
Fuses LoRAs for the text encoder. | |
Args: | |
text_encoder (`torch.nn.Module`): | |
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` | |
attribute. | |
lora_scale (`float`, defaults to 1.0): | |
Controls how much to influence the outputs with the LoRA parameters. | |
safe_fusing (`bool`, defaults to `False`): | |
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
adapter_names (`List[str]` or `str`): | |
The names of the adapters to use. | |
""" | |
merge_kwargs = {"safe_merge": safe_fusing} | |
for module in text_encoder.modules(): | |
if isinstance(module, BaseTunerLayer): | |
if lora_scale != 1.0: | |
module.scale_layer(lora_scale) | |
# For BC with previous PEFT versions, we need to check the signature | |
# of the `merge` method to see if it supports the `adapter_names` argument. | |
supported_merge_kwargs = list(inspect.signature(module.merge).parameters) | |
if "adapter_names" in supported_merge_kwargs: | |
merge_kwargs["adapter_names"] = adapter_names | |
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None: | |
raise ValueError( | |
"The `adapter_names` argument is not supported with your PEFT version. " | |
"Please upgrade to the latest version of PEFT. `pip install -U peft`" | |
) | |
module.merge(**merge_kwargs) | |
def unfuse_text_encoder_lora(text_encoder): | |
""" | |
Unfuses LoRAs for the text encoder. | |
Args: | |
text_encoder (`torch.nn.Module`): | |
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` | |
attribute. | |
""" | |
for module in text_encoder.modules(): | |
if isinstance(module, BaseTunerLayer): | |
module.unmerge() | |
def set_adapters_for_text_encoder( | |
adapter_names: Union[List[str], str], | |
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821 | |
text_encoder_weights: Optional[Union[float, List[float], List[None]]] = None, | |
): | |
""" | |
Sets the adapter layers for the text encoder. | |
Args: | |
adapter_names (`List[str]` or `str`): | |
The names of the adapters to use. | |
text_encoder (`torch.nn.Module`, *optional*): | |
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` | |
attribute. | |
text_encoder_weights (`List[float]`, *optional*): | |
The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters. | |
""" | |
if text_encoder is None: | |
raise ValueError( | |
"The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead." | |
) | |
def process_weights(adapter_names, weights): | |
# Expand weights into a list, one entry per adapter | |
# e.g. for 2 adapters: 7 -> [7,7] ; [3, None] -> [3, None] | |
if not isinstance(weights, list): | |
weights = [weights] * len(adapter_names) | |
if len(adapter_names) != len(weights): | |
raise ValueError( | |
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}" | |
) | |
# Set None values to default of 1.0 | |
# e.g. [7,7] -> [7,7] ; [3, None] -> [3,1] | |
weights = [w if w is not None else 1.0 for w in weights] | |
return weights | |
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names | |
text_encoder_weights = process_weights(adapter_names, text_encoder_weights) | |
set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights) | |
def disable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None): | |
""" | |
Disables the LoRA layers for the text encoder. | |
Args: | |
text_encoder (`torch.nn.Module`, *optional*): | |
The text encoder module to disable the LoRA layers for. If `None`, it will try to get the `text_encoder` | |
attribute. | |
""" | |
if text_encoder is None: | |
raise ValueError("Text Encoder not found.") | |
set_adapter_layers(text_encoder, enabled=False) | |
def enable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None): | |
""" | |
Enables the LoRA layers for the text encoder. | |
Args: | |
text_encoder (`torch.nn.Module`, *optional*): | |
The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder` | |
attribute. | |
""" | |
if text_encoder is None: | |
raise ValueError("Text Encoder not found.") | |
set_adapter_layers(text_encoder, enabled=True) | |
def _remove_text_encoder_monkey_patch(text_encoder): | |
recurse_remove_peft_layers(text_encoder) | |
if getattr(text_encoder, "peft_config", None) is not None: | |
del text_encoder.peft_config | |
text_encoder._hf_peft_config_loaded = None | |
class LoraBaseMixin: | |
"""Utility class for handling LoRAs.""" | |
_lora_loadable_modules = [] | |
num_fused_loras = 0 | |
def load_lora_weights(self, **kwargs): | |
raise NotImplementedError("`load_lora_weights()` is not implemented.") | |
def save_lora_weights(cls, **kwargs): | |
raise NotImplementedError("`save_lora_weights()` not implemented.") | |
def lora_state_dict(cls, **kwargs): | |
raise NotImplementedError("`lora_state_dict()` is not implemented.") | |
def _optionally_disable_offloading(cls, _pipeline): | |
""" | |
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. | |
Args: | |
_pipeline (`DiffusionPipeline`): | |
The pipeline to disable offloading for. | |
Returns: | |
tuple: | |
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. | |
""" | |
is_model_cpu_offload = False | |
is_sequential_cpu_offload = False | |
if _pipeline is not None and _pipeline.hf_device_map is None: | |
for _, component in _pipeline.components.items(): | |
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"): | |
if not is_model_cpu_offload: | |
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) | |
if not is_sequential_cpu_offload: | |
is_sequential_cpu_offload = ( | |
isinstance(component._hf_hook, AlignDevicesHook) | |
or hasattr(component._hf_hook, "hooks") | |
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) | |
) | |
logger.info( | |
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." | |
) | |
remove_hook_from_module(component, recurse=is_sequential_cpu_offload) | |
return (is_model_cpu_offload, is_sequential_cpu_offload) | |
def _fetch_state_dict( | |
cls, | |
pretrained_model_name_or_path_or_dict, | |
weight_name, | |
use_safetensors, | |
local_files_only, | |
cache_dir, | |
force_download, | |
proxies, | |
token, | |
revision, | |
subfolder, | |
user_agent, | |
allow_pickle, | |
): | |
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE | |
model_file = None | |
if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
# Let's first try to load .safetensors weights | |
if (use_safetensors and weight_name is None) or ( | |
weight_name is not None and weight_name.endswith(".safetensors") | |
): | |
try: | |
# Here we're relaxing the loading check to enable more Inference API | |
# friendliness where sometimes, it's not at all possible to automatically | |
# determine `weight_name`. | |
if weight_name is None: | |
weight_name = cls._best_guess_weight_name( | |
pretrained_model_name_or_path_or_dict, | |
file_extension=".safetensors", | |
local_files_only=local_files_only, | |
) | |
model_file = _get_model_file( | |
pretrained_model_name_or_path_or_dict, | |
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
) | |
state_dict = safetensors.torch.load_file(model_file, device="cpu") | |
except (IOError, safetensors.SafetensorError) as e: | |
if not allow_pickle: | |
raise e | |
# try loading non-safetensors weights | |
model_file = None | |
pass | |
if model_file is None: | |
if weight_name is None: | |
weight_name = cls._best_guess_weight_name( | |
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only | |
) | |
model_file = _get_model_file( | |
pretrained_model_name_or_path_or_dict, | |
weights_name=weight_name or LORA_WEIGHT_NAME, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
) | |
state_dict = load_state_dict(model_file) | |
else: | |
state_dict = pretrained_model_name_or_path_or_dict | |
return state_dict | |
def _best_guess_weight_name( | |
cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False | |
): | |
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE | |
if local_files_only or HF_HUB_OFFLINE: | |
raise ValueError("When using the offline mode, you must specify a `weight_name`.") | |
targeted_files = [] | |
if os.path.isfile(pretrained_model_name_or_path_or_dict): | |
return | |
elif os.path.isdir(pretrained_model_name_or_path_or_dict): | |
targeted_files = [ | |
f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension) | |
] | |
else: | |
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings | |
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)] | |
if len(targeted_files) == 0: | |
return | |
# "scheduler" does not correspond to a LoRA checkpoint. | |
# "optimizer" does not correspond to a LoRA checkpoint | |
# only top-level checkpoints are considered and not the other ones, hence "checkpoint". | |
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"} | |
targeted_files = list( | |
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files) | |
) | |
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files): | |
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files)) | |
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files): | |
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files)) | |
if len(targeted_files) > 1: | |
raise ValueError( | |
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}." | |
) | |
weight_name = targeted_files[0] | |
return weight_name | |
def unload_lora_weights(self): | |
""" | |
Unloads the LoRA parameters. | |
Examples: | |
```python | |
>>> # Assuming `pipeline` is already loaded with the LoRA parameters. | |
>>> pipeline.unload_lora_weights() | |
>>> ... | |
``` | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component, None) | |
if model is not None: | |
if issubclass(model.__class__, ModelMixin): | |
model.unload_lora() | |
elif issubclass(model.__class__, PreTrainedModel): | |
_remove_text_encoder_monkey_patch(model) | |
def fuse_lora( | |
self, | |
components: List[str] = [], | |
lora_scale: float = 1.0, | |
safe_fusing: bool = False, | |
adapter_names: Optional[List[str]] = None, | |
**kwargs, | |
): | |
r""" | |
Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
lora_scale (`float`, defaults to 1.0): | |
Controls how much to influence the outputs with the LoRA parameters. | |
safe_fusing (`bool`, defaults to `False`): | |
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
adapter_names (`List[str]`, *optional*): | |
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
Example: | |
```py | |
from diffusers import DiffusionPipeline | |
import torch | |
pipeline = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
).to("cuda") | |
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
pipeline.fuse_lora(lora_scale=0.7) | |
``` | |
""" | |
if "fuse_unet" in kwargs: | |
depr_message = "Passing `fuse_unet` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_unet` will be removed in a future version." | |
deprecate( | |
"fuse_unet", | |
"1.0.0", | |
depr_message, | |
) | |
if "fuse_transformer" in kwargs: | |
depr_message = "Passing `fuse_transformer` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_transformer` will be removed in a future version." | |
deprecate( | |
"fuse_transformer", | |
"1.0.0", | |
depr_message, | |
) | |
if "fuse_text_encoder" in kwargs: | |
depr_message = "Passing `fuse_text_encoder` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_text_encoder` will be removed in a future version." | |
deprecate( | |
"fuse_text_encoder", | |
"1.0.0", | |
depr_message, | |
) | |
if len(components) == 0: | |
raise ValueError("`components` cannot be an empty list.") | |
for fuse_component in components: | |
if fuse_component not in self._lora_loadable_modules: | |
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.") | |
model = getattr(self, fuse_component, None) | |
if model is not None: | |
# check if diffusers model | |
if issubclass(model.__class__, ModelMixin): | |
model.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) | |
# handle transformers models. | |
if issubclass(model.__class__, PreTrainedModel): | |
fuse_text_encoder_lora( | |
model, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
) | |
self.num_fused_loras += 1 | |
def unfuse_lora(self, components: List[str] = [], **kwargs): | |
r""" | |
Reverses the effect of | |
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
unfuse_text_encoder (`bool`, defaults to `True`): | |
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | |
LoRA parameters then it won't have any effect. | |
""" | |
if "unfuse_unet" in kwargs: | |
depr_message = "Passing `unfuse_unet` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_unet` will be removed in a future version." | |
deprecate( | |
"unfuse_unet", | |
"1.0.0", | |
depr_message, | |
) | |
if "unfuse_transformer" in kwargs: | |
depr_message = "Passing `unfuse_transformer` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_transformer` will be removed in a future version." | |
deprecate( | |
"unfuse_transformer", | |
"1.0.0", | |
depr_message, | |
) | |
if "unfuse_text_encoder" in kwargs: | |
depr_message = "Passing `unfuse_text_encoder` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_text_encoder` will be removed in a future version." | |
deprecate( | |
"unfuse_text_encoder", | |
"1.0.0", | |
depr_message, | |
) | |
if len(components) == 0: | |
raise ValueError("`components` cannot be an empty list.") | |
for fuse_component in components: | |
if fuse_component not in self._lora_loadable_modules: | |
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.") | |
model = getattr(self, fuse_component, None) | |
if model is not None: | |
if issubclass(model.__class__, (ModelMixin, PreTrainedModel)): | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
module.unmerge() | |
self.num_fused_loras -= 1 | |
def set_adapters( | |
self, | |
adapter_names: Union[List[str], str], | |
adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None, | |
): | |
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names | |
adapter_weights = copy.deepcopy(adapter_weights) | |
# Expand weights into a list, one entry per adapter | |
if not isinstance(adapter_weights, list): | |
adapter_weights = [adapter_weights] * len(adapter_names) | |
if len(adapter_names) != len(adapter_weights): | |
raise ValueError( | |
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}" | |
) | |
list_adapters = self.get_list_adapters() # eg {"unet": ["adapter1", "adapter2"], "text_encoder": ["adapter2"]} | |
all_adapters = { | |
adapter for adapters in list_adapters.values() for adapter in adapters | |
} # eg ["adapter1", "adapter2"] | |
invert_list_adapters = { | |
adapter: [part for part, adapters in list_adapters.items() if adapter in adapters] | |
for adapter in all_adapters | |
} # eg {"adapter1": ["unet"], "adapter2": ["unet", "text_encoder"]} | |
# Decompose weights into weights for denoiser and text encoders. | |
_component_adapter_weights = {} | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component) | |
for adapter_name, weights in zip(adapter_names, adapter_weights): | |
if isinstance(weights, dict): | |
component_adapter_weights = weights.pop(component, None) | |
if component_adapter_weights is not None and not hasattr(self, component): | |
logger.warning( | |
f"Lora weight dict contains {component} weights but will be ignored because pipeline does not have {component}." | |
) | |
if component_adapter_weights is not None and component not in invert_list_adapters[adapter_name]: | |
logger.warning( | |
( | |
f"Lora weight dict for adapter '{adapter_name}' contains {component}," | |
f"but this will be ignored because {adapter_name} does not contain weights for {component}." | |
f"Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}." | |
) | |
) | |
else: | |
component_adapter_weights = weights | |
_component_adapter_weights.setdefault(component, []) | |
_component_adapter_weights[component].append(component_adapter_weights) | |
if issubclass(model.__class__, ModelMixin): | |
model.set_adapters(adapter_names, _component_adapter_weights[component]) | |
elif issubclass(model.__class__, PreTrainedModel): | |
set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component]) | |
def disable_lora(self): | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component, None) | |
if model is not None: | |
if issubclass(model.__class__, ModelMixin): | |
model.disable_lora() | |
elif issubclass(model.__class__, PreTrainedModel): | |
disable_lora_for_text_encoder(model) | |
def enable_lora(self): | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component, None) | |
if model is not None: | |
if issubclass(model.__class__, ModelMixin): | |
model.enable_lora() | |
elif issubclass(model.__class__, PreTrainedModel): | |
enable_lora_for_text_encoder(model) | |
def delete_adapters(self, adapter_names: Union[List[str], str]): | |
""" | |
Args: | |
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s). | |
adapter_names (`Union[List[str], str]`): | |
The names of the adapter to delete. Can be a single string or a list of strings | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
if isinstance(adapter_names, str): | |
adapter_names = [adapter_names] | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component, None) | |
if model is not None: | |
if issubclass(model.__class__, ModelMixin): | |
model.delete_adapters(adapter_names) | |
elif issubclass(model.__class__, PreTrainedModel): | |
for adapter_name in adapter_names: | |
delete_adapter_layers(model, adapter_name) | |
def get_active_adapters(self) -> List[str]: | |
""" | |
Gets the list of the current active adapters. | |
Example: | |
```python | |
from diffusers import DiffusionPipeline | |
pipeline = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
).to("cuda") | |
pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy") | |
pipeline.get_active_adapters() | |
``` | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError( | |
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" | |
) | |
active_adapters = [] | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component, None) | |
if model is not None and issubclass(model.__class__, ModelMixin): | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
active_adapters = module.active_adapters | |
break | |
return active_adapters | |
def get_list_adapters(self) -> Dict[str, List[str]]: | |
""" | |
Gets the current list of all available adapters in the pipeline. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError( | |
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" | |
) | |
set_adapters = {} | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component, None) | |
if ( | |
model is not None | |
and issubclass(model.__class__, (ModelMixin, PreTrainedModel)) | |
and hasattr(model, "peft_config") | |
): | |
set_adapters[component] = list(model.peft_config.keys()) | |
return set_adapters | |
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None: | |
""" | |
Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case | |
you want to load multiple adapters and free some GPU memory. | |
Args: | |
adapter_names (`List[str]`): | |
List of adapters to send device to. | |
device (`Union[torch.device, str, int]`): | |
Device to send the adapters to. Can be either a torch device, a str or an integer. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
for component in self._lora_loadable_modules: | |
model = getattr(self, component, None) | |
if model is not None: | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
for adapter_name in adapter_names: | |
module.lora_A[adapter_name].to(device) | |
module.lora_B[adapter_name].to(device) | |
# this is a param, not a module, so device placement is not in-place -> re-assign | |
if hasattr(module, "lora_magnitude_vector") and module.lora_magnitude_vector is not None: | |
module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[ | |
adapter_name | |
].to(device) | |
def pack_weights(layers, prefix): | |
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers | |
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} | |
return layers_state_dict | |
def write_lora_layers( | |
state_dict: Dict[str, torch.Tensor], | |
save_directory: str, | |
is_main_process: bool, | |
weight_name: str, | |
save_function: Callable, | |
safe_serialization: bool, | |
): | |
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE | |
if os.path.isfile(save_directory): | |
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
return | |
if save_function is None: | |
if safe_serialization: | |
def save_function(weights, filename): | |
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) | |
else: | |
save_function = torch.save | |
os.makedirs(save_directory, exist_ok=True) | |
if weight_name is None: | |
if safe_serialization: | |
weight_name = LORA_WEIGHT_NAME_SAFE | |
else: | |
weight_name = LORA_WEIGHT_NAME | |
save_path = Path(save_directory, weight_name).as_posix() | |
save_function(state_dict, save_path) | |
logger.info(f"Model weights saved in {save_path}") | |
def lora_scale(self) -> float: | |
# property function that returns the lora scale which can be set at run time by the pipeline. | |
# if _lora_scale has not been set, return 1 | |
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0 | |