Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Dict, Optional, Union | |
import torch | |
from torch import nn | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import logging | |
from .attention_processor import AttentionProcessor | |
from .controlnet import BaseOutput, Tuple, zero_module | |
from .embeddings import ( | |
HunyuanCombinedTimestepTextSizeStyleEmbedding, | |
PatchEmbed, | |
PixArtAlphaTextProjection, | |
) | |
from .modeling_utils import ModelMixin | |
from .transformers.hunyuan_transformer_2d import HunyuanDiTBlock | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class HunyuanControlNetOutput(BaseOutput): | |
controlnet_block_samples: Tuple[torch.Tensor] | |
class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
conditioning_channels: int = 3, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
activation_fn: str = "gelu-approximate", | |
sample_size=32, | |
hidden_size=1152, | |
transformer_num_layers: int = 40, | |
mlp_ratio: float = 4.0, | |
cross_attention_dim: int = 1024, | |
cross_attention_dim_t5: int = 2048, | |
pooled_projection_dim: int = 1024, | |
text_len: int = 77, | |
text_len_t5: int = 256, | |
use_style_cond_and_image_meta_size: bool = True, | |
): | |
super().__init__() | |
self.num_heads = num_attention_heads | |
self.inner_dim = num_attention_heads * attention_head_dim | |
self.text_embedder = PixArtAlphaTextProjection( | |
in_features=cross_attention_dim_t5, | |
hidden_size=cross_attention_dim_t5 * 4, | |
out_features=cross_attention_dim, | |
act_fn="silu_fp32", | |
) | |
self.text_embedding_padding = nn.Parameter( | |
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) | |
) | |
self.pos_embed = PatchEmbed( | |
height=sample_size, | |
width=sample_size, | |
in_channels=in_channels, | |
embed_dim=hidden_size, | |
patch_size=patch_size, | |
pos_embed_type=None, | |
) | |
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( | |
hidden_size, | |
pooled_projection_dim=pooled_projection_dim, | |
seq_len=text_len_t5, | |
cross_attention_dim=cross_attention_dim_t5, | |
use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size, | |
) | |
# controlnet_blocks | |
self.controlnet_blocks = nn.ModuleList([]) | |
# HunyuanDiT Blocks | |
self.blocks = nn.ModuleList( | |
[ | |
HunyuanDiTBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
activation_fn=activation_fn, | |
ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
cross_attention_dim=cross_attention_dim, | |
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
skip=False, # always False as it is the first half of the model | |
) | |
for layer in range(transformer_num_layers // 2 - 1) | |
] | |
) | |
self.input_block = zero_module(nn.Linear(hidden_size, hidden_size)) | |
for _ in range(len(self.blocks)): | |
controlnet_block = nn.Linear(hidden_size, hidden_size) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_blocks.append(controlnet_block) | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the | |
corresponding cross attention processor. This is strongly recommended when setting trainable attention | |
processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def from_transformer( | |
cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True | |
): | |
config = transformer.config | |
activation_fn = config.activation_fn | |
attention_head_dim = config.attention_head_dim | |
cross_attention_dim = config.cross_attention_dim | |
cross_attention_dim_t5 = config.cross_attention_dim_t5 | |
hidden_size = config.hidden_size | |
in_channels = config.in_channels | |
mlp_ratio = config.mlp_ratio | |
num_attention_heads = config.num_attention_heads | |
patch_size = config.patch_size | |
sample_size = config.sample_size | |
text_len = config.text_len | |
text_len_t5 = config.text_len_t5 | |
conditioning_channels = conditioning_channels | |
transformer_num_layers = transformer_num_layers or config.transformer_num_layers | |
controlnet = cls( | |
conditioning_channels=conditioning_channels, | |
transformer_num_layers=transformer_num_layers, | |
activation_fn=activation_fn, | |
attention_head_dim=attention_head_dim, | |
cross_attention_dim=cross_attention_dim, | |
cross_attention_dim_t5=cross_attention_dim_t5, | |
hidden_size=hidden_size, | |
in_channels=in_channels, | |
mlp_ratio=mlp_ratio, | |
num_attention_heads=num_attention_heads, | |
patch_size=patch_size, | |
sample_size=sample_size, | |
text_len=text_len, | |
text_len_t5=text_len_t5, | |
) | |
if load_weights_from_transformer: | |
key = controlnet.load_state_dict(transformer.state_dict(), strict=False) | |
logger.warning(f"controlnet load from Hunyuan-DiT. missing_keys: {key[0]}") | |
return controlnet | |
def forward( | |
self, | |
hidden_states, | |
timestep, | |
controlnet_cond: torch.Tensor, | |
conditioning_scale: float = 1.0, | |
encoder_hidden_states=None, | |
text_embedding_mask=None, | |
encoder_hidden_states_t5=None, | |
text_embedding_mask_t5=None, | |
image_meta_size=None, | |
style=None, | |
image_rotary_emb=None, | |
return_dict=True, | |
): | |
""" | |
The [`HunyuanDiT2DControlNetModel`] forward method. | |
Args: | |
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): | |
The input tensor. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. | |
controlnet_cond ( `torch.Tensor` ): | |
The conditioning input to ControlNet. | |
conditioning_scale ( `float` ): | |
Indicate the conditioning scale. | |
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. This is the output of `BertModel`. | |
text_embedding_mask: torch.Tensor | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
of `BertModel`. | |
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. | |
text_embedding_mask_t5: torch.Tensor | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
of T5 Text Encoder. | |
image_meta_size (torch.Tensor): | |
Conditional embedding indicate the image sizes | |
style: torch.Tensor: | |
Conditional embedding indicate the style | |
image_rotary_emb (`torch.Tensor`): | |
The image rotary embeddings to apply on query and key tensors during attention calculation. | |
return_dict: bool | |
Whether to return a dictionary. | |
""" | |
height, width = hidden_states.shape[-2:] | |
hidden_states = self.pos_embed(hidden_states) # b,c,H,W -> b, N, C | |
# 2. pre-process | |
hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond)) | |
temb = self.time_extra_emb( | |
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype | |
) # [B, D] | |
# text projection | |
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape | |
encoder_hidden_states_t5 = self.text_embedder( | |
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) | |
) | |
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) | |
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) | |
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() | |
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) | |
block_res_samples = () | |
for layer, block in enumerate(self.blocks): | |
hidden_states = block( | |
hidden_states, | |
temb=temb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) # (N, L, D) | |
block_res_samples = block_res_samples + (hidden_states,) | |
controlnet_block_res_samples = () | |
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): | |
block_res_sample = controlnet_block(block_res_sample) | |
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) | |
# 6. scaling | |
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] | |
if not return_dict: | |
return (controlnet_block_res_samples,) | |
return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) | |
class HunyuanDiT2DMultiControlNetModel(ModelMixin): | |
r""" | |
`HunyuanDiT2DMultiControlNetModel` wrapper class for Multi-HunyuanDiT2DControlNetModel | |
This module is a wrapper for multiple instances of the `HunyuanDiT2DControlNetModel`. The `forward()` API is | |
designed to be compatible with `HunyuanDiT2DControlNetModel`. | |
Args: | |
controlnets (`List[HunyuanDiT2DControlNetModel]`): | |
Provides additional conditioning to the unet during the denoising process. You must set multiple | |
`HunyuanDiT2DControlNetModel` as a list. | |
""" | |
def __init__(self, controlnets): | |
super().__init__() | |
self.nets = nn.ModuleList(controlnets) | |
def forward( | |
self, | |
hidden_states, | |
timestep, | |
controlnet_cond: torch.Tensor, | |
conditioning_scale: float = 1.0, | |
encoder_hidden_states=None, | |
text_embedding_mask=None, | |
encoder_hidden_states_t5=None, | |
text_embedding_mask_t5=None, | |
image_meta_size=None, | |
style=None, | |
image_rotary_emb=None, | |
return_dict=True, | |
): | |
""" | |
The [`HunyuanDiT2DControlNetModel`] forward method. | |
Args: | |
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): | |
The input tensor. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. | |
controlnet_cond ( `torch.Tensor` ): | |
The conditioning input to ControlNet. | |
conditioning_scale ( `float` ): | |
Indicate the conditioning scale. | |
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. This is the output of `BertModel`. | |
text_embedding_mask: torch.Tensor | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
of `BertModel`. | |
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. | |
text_embedding_mask_t5: torch.Tensor | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
of T5 Text Encoder. | |
image_meta_size (torch.Tensor): | |
Conditional embedding indicate the image sizes | |
style: torch.Tensor: | |
Conditional embedding indicate the style | |
image_rotary_emb (`torch.Tensor`): | |
The image rotary embeddings to apply on query and key tensors during attention calculation. | |
return_dict: bool | |
Whether to return a dictionary. | |
""" | |
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): | |
block_samples = controlnet( | |
hidden_states=hidden_states, | |
timestep=timestep, | |
controlnet_cond=image, | |
conditioning_scale=scale, | |
encoder_hidden_states=encoder_hidden_states, | |
text_embedding_mask=text_embedding_mask, | |
encoder_hidden_states_t5=encoder_hidden_states_t5, | |
text_embedding_mask_t5=text_embedding_mask_t5, | |
image_meta_size=image_meta_size, | |
style=style, | |
image_rotary_emb=image_rotary_emb, | |
return_dict=return_dict, | |
) | |
# merge samples | |
if i == 0: | |
control_block_samples = block_samples | |
else: | |
control_block_samples = [ | |
control_block_sample + block_sample | |
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0]) | |
] | |
control_block_samples = (control_block_samples,) | |
return control_block_samples | |