InvSR / src /diffusers /models /controlnet_hunyuan.py
OAOA's picture
first commit
bfa59ab
raw
history blame
16.9 kB
# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import logging
from .attention_processor import AttentionProcessor
from .controlnet import BaseOutput, Tuple, zero_module
from .embeddings import (
HunyuanCombinedTimestepTextSizeStyleEmbedding,
PatchEmbed,
PixArtAlphaTextProjection,
)
from .modeling_utils import ModelMixin
from .transformers.hunyuan_transformer_2d import HunyuanDiTBlock
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class HunyuanControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
conditioning_channels: int = 3,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "gelu-approximate",
sample_size=32,
hidden_size=1152,
transformer_num_layers: int = 40,
mlp_ratio: float = 4.0,
cross_attention_dim: int = 1024,
cross_attention_dim_t5: int = 2048,
pooled_projection_dim: int = 1024,
text_len: int = 77,
text_len_t5: int = 256,
use_style_cond_and_image_meta_size: bool = True,
):
super().__init__()
self.num_heads = num_attention_heads
self.inner_dim = num_attention_heads * attention_head_dim
self.text_embedder = PixArtAlphaTextProjection(
in_features=cross_attention_dim_t5,
hidden_size=cross_attention_dim_t5 * 4,
out_features=cross_attention_dim,
act_fn="silu_fp32",
)
self.text_embedding_padding = nn.Parameter(
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32)
)
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
in_channels=in_channels,
embed_dim=hidden_size,
patch_size=patch_size,
pos_embed_type=None,
)
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(
hidden_size,
pooled_projection_dim=pooled_projection_dim,
seq_len=text_len_t5,
cross_attention_dim=cross_attention_dim_t5,
use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size,
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
# HunyuanDiT Blocks
self.blocks = nn.ModuleList(
[
HunyuanDiTBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
activation_fn=activation_fn,
ff_inner_dim=int(self.inner_dim * mlp_ratio),
cross_attention_dim=cross_attention_dim,
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
skip=False, # always False as it is the first half of the model
)
for layer in range(transformer_num_layers // 2 - 1)
]
)
self.input_block = zero_module(nn.Linear(hidden_size, hidden_size))
for _ in range(len(self.blocks)):
controlnet_block = nn.Linear(hidden_size, hidden_size)
controlnet_block = zero_module(controlnet_block)
self.controlnet_blocks.append(controlnet_block)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the
corresponding cross attention processor. This is strongly recommended when setting trainable attention
processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
@classmethod
def from_transformer(
cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True
):
config = transformer.config
activation_fn = config.activation_fn
attention_head_dim = config.attention_head_dim
cross_attention_dim = config.cross_attention_dim
cross_attention_dim_t5 = config.cross_attention_dim_t5
hidden_size = config.hidden_size
in_channels = config.in_channels
mlp_ratio = config.mlp_ratio
num_attention_heads = config.num_attention_heads
patch_size = config.patch_size
sample_size = config.sample_size
text_len = config.text_len
text_len_t5 = config.text_len_t5
conditioning_channels = conditioning_channels
transformer_num_layers = transformer_num_layers or config.transformer_num_layers
controlnet = cls(
conditioning_channels=conditioning_channels,
transformer_num_layers=transformer_num_layers,
activation_fn=activation_fn,
attention_head_dim=attention_head_dim,
cross_attention_dim=cross_attention_dim,
cross_attention_dim_t5=cross_attention_dim_t5,
hidden_size=hidden_size,
in_channels=in_channels,
mlp_ratio=mlp_ratio,
num_attention_heads=num_attention_heads,
patch_size=patch_size,
sample_size=sample_size,
text_len=text_len,
text_len_t5=text_len_t5,
)
if load_weights_from_transformer:
key = controlnet.load_state_dict(transformer.state_dict(), strict=False)
logger.warning(f"controlnet load from Hunyuan-DiT. missing_keys: {key[0]}")
return controlnet
def forward(
self,
hidden_states,
timestep,
controlnet_cond: torch.Tensor,
conditioning_scale: float = 1.0,
encoder_hidden_states=None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
image_rotary_emb=None,
return_dict=True,
):
"""
The [`HunyuanDiT2DControlNetModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
The input tensor.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step.
controlnet_cond ( `torch.Tensor` ):
The conditioning input to ControlNet.
conditioning_scale ( `float` ):
Indicate the conditioning scale.
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
text_embedding_mask: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
of `BertModel`.
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
text_embedding_mask_t5: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
of T5 Text Encoder.
image_meta_size (torch.Tensor):
Conditional embedding indicate the image sizes
style: torch.Tensor:
Conditional embedding indicate the style
image_rotary_emb (`torch.Tensor`):
The image rotary embeddings to apply on query and key tensors during attention calculation.
return_dict: bool
Whether to return a dictionary.
"""
height, width = hidden_states.shape[-2:]
hidden_states = self.pos_embed(hidden_states) # b,c,H,W -> b, N, C
# 2. pre-process
hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond))
temb = self.time_extra_emb(
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype
) # [B, D]
# text projection
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape
encoder_hidden_states_t5 = self.text_embedder(
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])
)
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1)
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1)
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1)
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool()
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding)
block_res_samples = ()
for layer, block in enumerate(self.blocks):
hidden_states = block(
hidden_states,
temb=temb,
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
) # (N, L, D)
block_res_samples = block_res_samples + (hidden_states,)
controlnet_block_res_samples = ()
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
block_res_sample = controlnet_block(block_res_sample)
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
# 6. scaling
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
if not return_dict:
return (controlnet_block_res_samples,)
return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
class HunyuanDiT2DMultiControlNetModel(ModelMixin):
r"""
`HunyuanDiT2DMultiControlNetModel` wrapper class for Multi-HunyuanDiT2DControlNetModel
This module is a wrapper for multiple instances of the `HunyuanDiT2DControlNetModel`. The `forward()` API is
designed to be compatible with `HunyuanDiT2DControlNetModel`.
Args:
controlnets (`List[HunyuanDiT2DControlNetModel]`):
Provides additional conditioning to the unet during the denoising process. You must set multiple
`HunyuanDiT2DControlNetModel` as a list.
"""
def __init__(self, controlnets):
super().__init__()
self.nets = nn.ModuleList(controlnets)
def forward(
self,
hidden_states,
timestep,
controlnet_cond: torch.Tensor,
conditioning_scale: float = 1.0,
encoder_hidden_states=None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
image_rotary_emb=None,
return_dict=True,
):
"""
The [`HunyuanDiT2DControlNetModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
The input tensor.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step.
controlnet_cond ( `torch.Tensor` ):
The conditioning input to ControlNet.
conditioning_scale ( `float` ):
Indicate the conditioning scale.
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
text_embedding_mask: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
of `BertModel`.
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
text_embedding_mask_t5: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
of T5 Text Encoder.
image_meta_size (torch.Tensor):
Conditional embedding indicate the image sizes
style: torch.Tensor:
Conditional embedding indicate the style
image_rotary_emb (`torch.Tensor`):
The image rotary embeddings to apply on query and key tensors during attention calculation.
return_dict: bool
Whether to return a dictionary.
"""
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
block_samples = controlnet(
hidden_states=hidden_states,
timestep=timestep,
controlnet_cond=image,
conditioning_scale=scale,
encoder_hidden_states=encoder_hidden_states,
text_embedding_mask=text_embedding_mask,
encoder_hidden_states_t5=encoder_hidden_states_t5,
text_embedding_mask_t5=text_embedding_mask_t5,
image_meta_size=image_meta_size,
style=style,
image_rotary_emb=image_rotary_emb,
return_dict=return_dict,
)
# merge samples
if i == 0:
control_block_samples = block_samples
else:
control_block_samples = [
control_block_sample + block_sample
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0])
]
control_block_samples = (control_block_samples,)
return control_block_samples